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Preface 
 

 

The second part of Mechanical Vibrations covers advanced topics on 

Structural Dynamic Modeling at postgraduate level. It is based on lecture notes 

prepared for the postgraduate and master courses organized at the Strength of 

Materials Chair, University Politehnica of Bucharest. 

The first volume, published in 2006, treats vibrations in linear and 

nonlinear single degree of freedom systems, vibrations in systems with two and/or 

several degrees of freedom and lateral vibrations of beams. Its content was limited 

to what can be taught in a one-semester (28 hours) lecture course, supported by 28 

hours of tutorial and laboratory.  

The second volume is about modal analysis, computational methods for 

large eigenvalue problems, analysis of frequency response data by nonparametric 

methods, identification of dynamic structural parameters, dynamic model reduction 

and test-analysis correlation.  

This book could be used as a textbook for a second course in Mechanical 

Vibrations or for a course at master level on Test-Analysis Correlation in 

Engineering Dynamics. For full comprehension of the mathematics employed, the 

reader should be familiar with matrix algebra and basic eigenvalue computations. 

It addresses to students pursuing their master or doctorate studies, to 

postdoc students and research scientists working in the field of Structural 

Dynamics and Mechanical Vibrations, being a prerequisite for those interested in 

finite element model updating and experimental modal analysis. 

The course reflects the author’s experience and presents results from his 

publications. Some advanced methods, currently used in experimental modal 

analysis and parameter estimation of mechanical and structural systems, are not 

treated and can be found in the comprehensive bibliography at the end of each 

chapter. 

Related not treated topics include: sensitivity analysis, modal analysis 

using operating deflection shapes, real normalization of complex modes, structural 

dynamics modification, automated finite element model updating, error 

localization, structural damage detection and material identification. They are 

discussed in a separate book. 

 

 

March 2010     Mircea Radeş 
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Prefaţă 
 

 

Partea a doua a cursului de Vibraţii mecanice conţine elemente avansate de 

modelare dinamică a structurilor, la nivel postuniversitar. Ea se bazează pe 

cursurile predate la cursurile de studii aprofundate şi de master organizate la 

Catedra de Rezistenţa materialelor de la Universitatea Politehnica Bucureşti 

În primul volum, publicat în 2006, s-au prezentat vibraţii în sisteme liniare 

şi neliniare cu un grad de libertate, vibraţii în sisteme cu două sau mai multe grade 

de libertate şi vibraţiile barelor drepte. Conţinutul primei părţi a fost limitat la ceea 

ce se poate preda într-un curs de un semestru (28 ore), însoţit de activităţi de 

laborator şi seminar de 28 ore. 

În volumul al doilea se prezintă elemente de analiză modală a structurilor, 

metode de calcul pentru probleme de valori proprii de ordin mare, metode 

neparametrice pentru analiza funcţiilor răspunsului în frecvenţă, identificarea 

pametrilor sistemelor vibratoare, reducerea ordinului modelelor şi metode de 

corelare a modelelor analitice cu rezultatele experimentale. 

Cartea poate fi utilizată ca suport pentru un al doilea curs de Vibraţii 

mecanice sau pentru un curs la nivel de master privind Corelarea analiză-

experiment în Dinamica structurilor. Pentru înţelegerea deplină a suportului 

matematic, cititorul trebuie să aibă cunoştinţe de algebră matricială şi rezolvarea 

problemelor de valori proprii. 

Cursul se adresează studenţilor de la studii de masterat sau doctorat, 

studenţilor postdoc şi cercetătorilor ştiinţifici în domeniile Dinamicii structurilor şi 

Vibraţiilor mecanice, fiind util celor interesaţi în verificarea şi validarea modelelor 

cu elemente finite şi analiza modală experimentală. 

Cursul reflectă experienţa autorului şi prezintă rezultate din propriile 

lucrări. O serie de metode moderne utilizate în prezent în analiza modală 

experimentală şi estimarea parametrilor sistemelor mecanice şi structurale nu sunt 

tratate şi pot fi consultate în referinţele bibliografice incluse la sfârşitul fiecărui 

capitol. 

Nu se tratează analiza senzitivităţii, analiza modală fără excitaţie 

controlată, echivalarea reală a modurilor complexe de vibraţie, analiza modificării 

structurilor, updatarea automată a modelelor cu elemente finite, localizarea erorilor, 

detectarea defectelor structurale şi identificarea materialelor, acestea fiind studiate 

într-un volum aparte. 

 

Martie 2010     Mircea Radeş 
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7. 
MODAL ANALYSIS 

The dynamic behavior of a mechanical vibratory system is usually 

studied by one of two methods: the mode superposition method or the direct 

integration method. The former involves calculating the response in each mode 

separately and then summing the response in all modes of interest to obtain the 

overall response. The latter involves computing the response of the system by step-

by-step numerical integration. For many problems, the mode superposition offers 

greater insight into the dynamic behavior and parameter dependence of the system 

being studied. 

The major obstacle in the solution of the differential equations of motion 

of a vibratory system, for a given set of forcing functions and initial conditions, is 

the coupling between equations. This is represented by non-zero off-diagonal 

elements in the system matrices. If the equations of motion could be uncoupled, i.e. 

for diagonal mass, stiffness (and damping) matrices, then each equation could be 

solved independent of the other equations. In this case, each uncoupled equation 

would look just like the equation for a single degree of freedom, whose solution 

can very easily be obtained. 

The analytical modal analysis is such a procedure, based on a linear 

transformation of coordinates, which decouples the equations of motion. This 

coordinate transformation is done by a matrix comprised of the system modal 

vectors, determined from the solution of the system’s eigenvalue problem. After 

solving for the modal coordinates, the displacements in the configuration space are 

expressed as linear combinations of the modal coordinates. 

7.1  Modes of vibration 

A mode of vibration can be defined as a way of vibrating, or a pattern of 

vibration, when applied to a system or structure that has several points with 

different amplitudes of deflection [7.1]. 

A mode of vibration is defined by two distinct elements: a) a time 

variation of the vibration; and b) a spatial variation of the amplitude of motion 
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across the structure. The time variation defines the frequency of oscillation together 

with any associated rate of decay or growth. The spatial variation defines the 

different vibration amplitudes from one point on the structure to the next. 

For a discrete system, the expression that defines a vibration mode can be 

written as 

       tXtx e ,    (7.1) 

where   represents the modal frequency, and the vector  X  represents the mode 

shape (modal vector). 

If   is imaginary   i , then the motion is purely oscillatory at 

frequency  . If   is complex, the motion is oscillatory with exponential decay or 

growth, depending on the sign of the real part of  . 

The elements of the modal vector may be real or complex quantities. In a 

real mode shape, all coordinates are vibrating exactly in or out of phase with each 

other. All points reach their maximum deflections at the same instants in time, and 

pass through their undeformed positions simultaneously (standing wave). In a 

complex mode shape, each coordinate vibrates with its own different phase angle. 

Each point of the structure reaches its own maximum excursion at different instants 

in time compared with its neighbors and, similarly, passes through its static 

equilibrium position at different instants to the other points (traveling wave). 

There are basically two types of vibration modes: a) free vibration modes, 

and b) forced vibration modes. Modes of the first category are sometimes called 

‘normal’ or ‘natural’ modes, while those of the second category are called ‘forced 

modes’. 

Substitution of (7.1) into the equations of motion of free vibrations leads 

to an eigenvalue problem. It turns out that the eigenvalues are connected to the 

modal frequencies and the eigenvectors are the modal vectors. Any modal 

decomposition is equivalent to solving the associate eigenproblem [7.2]. 

7.2  Real undamped natural modes 

The normal modes are obtained from solution of the equations of motion 

for the case of zero external excitation, i.e. the solution to the homogeneous 

equations of motion. Undamped and proportionally damped systems have real 

modes of vibration. In the following only non-gyroscopic systems are considered. 

The analysis is restricted to systems with non-repeated natural frequencies. 

Unsupported (free-free) systems are discussed in a separate section. 
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7.2.1  Undamped non-gyroscopic systems 

Consider the free vibrations of a discrete conservative system described 

by a linear system of ordinary differential equations with constant coefficients 

       0 xkxm  ,   (7.2) 

where  m  and  k  are real mass and stiffness matrices, respectively, of order n, 

 x  and  x  are the n-dimensional vectors of accelerations and displacements. 

It is of interest to find a special type of solution, in which all coordinates 

 tx j  execute synchronous motion. Physically, this implies a motion in which all 

the coordinates have the same time dependence. The general configuration of the 

system does not change, except for the amplitude, so that the ratio between any two 

coordinates  tx j  and  tx  remains constant during the motion [7.3]. 

It is demonstrated that, if synchronous motion is possible, then the time 

dependence is harmonic 

        tuCtx cos ,   (7.3) 

where C is an arbitrary constant,   is the circular frequency of the harmonic 

motion, and   is the initial phase shift. 

Substitution of (7.3) into (7.2) yields 

      umuk 2 ,    (7.4) 

which represents the symmetric generalized eigenvalue problem associated with 

matrices  m  and  k . 

Equation (7.4) has non-trivial solutions if and only if   satisfies the 

characteristic equation 

 det      02  mk  ,    (7.5) 

and the vector  u  satisfies the condition 

         02  umk  .   (7.6) 

Equation (7.5) is of degree n in 
2 . It possesses in general n distinct 

roots, referred to as eigenvalues. The case of multiple roots is not considered 

herein. The square roots of the eigenvalues are the system undamped natural 

frequencies, r , arranged in order of increasing magnitude. There are n 

eigenfrequencies r  in which harmonic motion of the type (7.3) is possible.  
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As matrices  m  and  k  are real and symmetric, the eigenvalues are 

real positive and the natural frequencies are real. Zero eigenvalues correspond to 

rigid body modes. 

Associated with every one of the eigenfrequencies r  there is a certain 

non-trivial real vector  ru  which satisfies the equation 

      rrr umuk 2 . n,...,,r 21  (7.7) 

The eigenvectors  ru , also called modal vectors, represent physically 

the mode shapes, i.e. the spatial distribution of displacements during the motion in 

the respective mode of vibration. They are undamped modes of vibration, or 

natural modes, being intrinsic (natural) system properties, independent of the initial 

conditions of motion or the external forcing. 

These vectors are unique, in the sense that the ratio between any two 

elements rix  and rjx  is constant. The value of the elements themselves is 

arbitrary, because equations (7.7) are homogeneous. 

Figure 7.1 illustrates the lowest three planar mode shapes of a cantilever 

beam. The modes are plotted at different time instants, revealing the nodal points, a 

characteristic of standing waves. For beams, there is a direct correlation between 

the mode index and the number of nodal points, a fact which helps in 

measurements. 

 

Fig. 7.1  

In pseudo-animated displays, all points will reach maximum departures 

from their equilibrium positions or become zero at the same instants. The nodes are 

stationary. Hence, if stationary nodes are visible, then the modes are real. 
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7.2.1.1  Normalization of real modal vectors 

The process of scaling the elements of the natural modes to render their 

amplitude unique is called normalization. The resulting vectors are referred to as 

normal modes. 

1. Unity modal mass 

A convenient normalization procedure consists of setting 

        1r
T
r umu .  n,...,,r 21  (7.8) 

This is called mass normalization and has the advantage of yielding 

     2
rr

T
r uku  .  n,...,,r 21  (7.9) 

2. Particular component of modal vector set to unity 

Another normalization scheme consists of setting the value of the largest 

element of the modal vector  ru  equal to 1, which is useful for plotting the mode 

shapes. 

3.  Unity length of modal vector 

This is a less recommended normalization, implying     1r
T
r uu . 

The normalization process is just a convenience and is devoid of physical 

significance. 

7.2.1.2  Orthogonality of real modal vectors 

Pre-multiplying both sides of (7.7) by  Tsu  we obtain 

         r
T
srr

T
s umuuku 2 .  (7.10) 

Inverting indices and transposing yields 

         r
T
ssr

T
s umuuku 2 .  (7.11) 

On subtracting (7.11) from (7.10) one finds, for sr  , if sr    and 

assuming that matrices are symmetric, that the modal vectors satisfy the 

orthogonality conditions 

     0r
T
s umu ,  sr    (7.12) 

     0r
T
s uku .  sr    (7.13) 
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Note that the orthogonality is with respect to either the mass matrix  m  or 

the stiffness matrix  k  which play the role of weighting matrices. 

If the modes are mass-normalized, they satisfy the relation 

     rss
T
r umu  ,  n,..,,s,r 21   (7.14) 

where rs  is the Kronecker delta. 

7.2.1.3  Modal matrix 

The modal vectors can be arranged as columns of a square matrix of 

order n, known as the modal matrix 

       






 nuuuu 21 .   (7.15) 

The modal analysis is based on a linear transformation 

      



n

r

rr ququx

1

   (7.16) 

by which  x  is expressed as a linear combination of the modal vectors  ru . 

The coefficients rq  are called principal or modal coordinates. 

7.2.1.4  Free vibration solution 

Inserting (7.16) into (7.2) and premultiplying the result by  Tru , we obtain 

            0

11

 


n

r

rr
T
r

n

r

rr
T
r qukuqumu  . (7.17) 

Considering the orthogonality conditions (7.12) and (7.13), we arrive at the 

equation of motion in the r-th mode of vibration 

0 rrrr qKqM  ,    (7.18) 

where 

     r
T
rr umuM        r

T
rr ukuK  .  (7.19) 

By analogy with the single degree of freedom mass-spring system, rM  is a 

generalized or modal mass, rK  is a generalized or modal stiffness, and rq  is a 
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principal or modal coordinate. Modal masses and stiffnesses are functions of the 

scaling of modal vectors and are therefore themselves arbitrary in magnitude. 

Inserting the first equation (7.16) into (7.2) and premultiplying by  Tu  

we obtain  

                0 qukuqumu
TT  , 

or 

       0 qKqM  ,   (7.20) 

where the modal mass matrix 

        umuM
T

     (7.21) 

and the modal stiffness matrix 

        ukuK
T

     (7.22) 

are diagonal matrices, due to the orthogonality of modal vectors. 

It turns out that the linear transformation (7.16) uncouples the equations of 

motion (7.2). The modal matrix (7.15) simultaneously diagonalizes the system mass 

and stiffness matrices. 

The r-th equation (7.18) has the same structure as that of an undamped 

single degree of freedom system. Its solution is a harmonic motion of the form 

   rrrr tCtq   cos ,   (7.23) 

where 

 
     

     r
T
r

r
T
r

r

r
r

umu

uku

M

K
2 .   (7.24) 

The integration constants rC  and r  are determined from the initial 

conditions of the motion. 

Inserting the modal coordinates (7.23) back into the transformation (7.16), 

we obtain the displacements in the configuration space 

        



n

r
rrrr tuCx

1

cos  .  (7.25) 

Equation (7.25) indicates that the free vibration of a multi degree of 

freedom system consists of a superposition of n harmonic motions with frequencies 

equal to the system undamped natural frequencies. 
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It can be shown that, if the initial conditions are such that the mode  ru  

is exclusively excited (e.g., zero initial velocity vector and initial displacement 

vector resembling the respective modal vector), the motion will resemble entirely 

that mode shape and the system will perform a synchronous harmonic motion of 

frequency r . 

7.2.1.5  Undamped forced vibration 

In the case of forced vibrations, the equations of motion have the form 

       fxkxm  ,   (7.26) 

where  f  is the forcing vector. 

For harmonic excitation  

    tf̂f cos     (7.27) 

the steady-state response is 

    tx̂x cos ,     tq̂q cos ,  (7.28) 

where a ‘hat’ above a letter denotes amplitude. 

Substituting (7.27) and (7.28) into (7.26) we obtain 

        f̂x̂km  2 .   (7.29) 

Using the coordinate transformation (7.16) 

      



n

r

rr q̂uq̂ux̂

1

   (7.30) 

the r-th equation (7.29) becomes 

     rrrr F̂q̂MK  2     (7.31) 

where the modal force 

      f̂uF̂ rr
T

 .     (7.32) 

The response in the modal space is 

   
rr

r
r

MK

F̂
q̂

2
 ,    (7.33) 

which substituted back into (7.30) gives the response in the configuration space 
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   
   







n

r rr

T
r

r
MK

f̂u
ux̂

1

2
   (7.34) 

or equivalently 

 
   

           
 f̂

umuuku

uu
x̂

n

r r
T
rr

T
r

T
rr







1

2
.  (7.35) 

 The displacement at coordinate j produced by a harmonic force applied at 

coordinate   is given by 




f̂
MK

uu
x̂

n

r rr

rrj
j 






1

2
    (7.36) 

7.2.1.6  Excitation modal vectors 

 Although the response modal vectors  ru  are free vibration modes, i.e. 

they exist in the absence of any external forcing, it is possible to attach to each of 

them an excitation modal vector  r̂ , also called principal mode of excitation. 

 By definition, an excitation modal vector defines the distribution of 

external forcing able to maintain the vibration in an undamped natural mode at 

frequencies which are different from the corresponding natural frequency. 

 If an excitation     t
r

ˆf  ie  produces the response     t
rux ie , 

then 

          rr umkˆ 2  .   (7.37) 

 Premultiplying in (7.37) by  Tsu , and using (7.12) and (7.13), yields 

       0r
T
s

ˆu  .    (7.38) 

 The work done by the forces from an excitation modal vector on the 

displacements of other modes of vibration is zero. 

 Equations (7.19) yield 

      















2

2
2 1

r

rrrr
T
r KMKˆu




 , 

which for r   is different from zero. 
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7.2.2  Systems with proportional damping 

The dynamic response of damped non-gyroscopic systems can be 

expressed in terms of the real normal modes of the associate conservative system if 

the damping is proportional to the system mass and/or stiffness matrix (Section 

4.6), that is, if 

     kmc   ,    (7.39) 

where   and   are constants. For this hypothetical form of damping, called 

proportional damping or Rayleigh damping, the coordinate transformation 

discussed previously, that diagonalizes the system mass and stiffness matrices, will 

also diagonalize the system damping matrix. Therefore we can transform the 

system coupled equations of motion into uncoupled equations describing single 

degree of freedom motions in modal coordinates. 

 There are also other conditions when the modal damping matrix becomes 

diagonal, e.g. 

            cmkkmc
11 

 , 

but they are only special cases which occur seldom [7.4, 7.5]. In practice the use of 

proportional damping is not based on the fulfilment of such a complicated 

condition, but on simply neglecting the off-diagonal elements of the modal 

damping matrix, i.e. neglecting the modal couplings due to the damping. 

7.2.2.1  Viscous damping 

Assume we have a viscously damped system, as represented by the 

following equation 

            tfxkxcxm   ,  (7.40) 

where  c  is the damping matrix, considered real, symmetric and positive definite, 

and  x  is the column vector of velocities.  

We first solve the eigenvalue problem (7.4) associated with the 

undamped system. This gives the system’s undamped natural frequencies and the 

real ‘classical’ mode shapes. 

Then we apply the coordinate transformation (7.16) to equation (7.40) 

and premultiply by  Tu  to obtain 

                         fuqukuqucuqumu
TTTT

  . (7.41) 

Due to the orthogonality properties of the real mode shapes, the modal 

damping matrix 
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                       KMukuumuucuC
TTT

   

         (7.42) 

is diagonal. 

The following orthogonality relations can be established (see 4.127) 

     0r
T
s ucu .  sr    (7.43) 

Equations (7.41) can be written 

          FqKqCqM   ,  (7.44) 

where 

       fuF
T

     (7.45) 

is the vector of modal forces. 

The above equations are uncoupled. The r-th equation is 

 rrrrrrr FqKqCqM   ,   (7.46) 

where rM  and rK  are defined by (7.19) and  

     r
T
rr ucuC  ,  n,...,,r 21   (7.47) 

are modal damping coefficients. 

Equation (7.46) can be written 

 rrrrrrrr MFqqq  2ζ2   ,  (7.48) 

where 

  
rr

r
r

KM

C

2
     (7.49) 

is the r-th modal damping ratio, and r  is the r-th undamped natural frequency. 

For free vibrations, equation (7.48) becomes 

 0ζ2 2  rrrrrr qqq   , 

which, for 1ζ0  r , has solution of the form 

   






 


rrr
t

rr teAtq rr  2ζ
ζ1cos .  (7.50) 
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For harmonic excitation and steady-state response (see Section 4.6.3.3), 

denote 

     tf̂f ie ,     tx~x ie ,  (7.51) 

     tF̂F ie ,     tq~q ie ,  (7.52) 

        r

n

r

r uq~q~ux~ 




1

,   (7.53) 

where a ‘hat’ above a letter means real amplitude and a ‘tilde’ above a letter 

denotes complex amplitude. 

Substitute (7.52) into equation (7.48) to obtain 

  
   

 rrrr

T
r

r

M

f̂u
q~

 ζ2i22 

   (7.54) 

then, from (7.53), 

 
   

 
 f̂

M

uu
x~

n

r rrrr

T
rr

 



1
22 ζ2i 

.  (7.55) 

Note that the dyadic product    T
rr uu  is a square matrix of order n. 

7.2.2.2  Structural damping 

The following discussion relates to the forced vibration of a system with 

structural (hysteretic) damping. The equation of motion to be considered is 

            tef̂xkxdxm 



i1
  , (7.56) 

where  d  is the structural damping matrix (real, symmetric and positive 

definite). 

For proportional structural damping, the following orthogonality relation 

holds 

     0r
T
s udu .  sr    (7.57) 

The modal structural damping coefficients are defined as 

     r
T
rr uduD  .  n,...,,r 21   (7.58) 
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Assuming a solution of the form  

      tx~x ie ,    (7.59) 

equation (7.56) becomes 

          f̂x~kdm  i2 .  (7.60) 

The coordinate transformation  

      



n

r

rr p~up~ux~

1

,   (7.61) 

where rp~  are complex modal coordinates, uncouples equations (7.60) which 

become 

             F̂f̂up~KDM
T

 i2  (7.62) 

where 

      rDD diag .    (7.63) 

 The r-th equation is 

       f̂uF̂p~DMK
T
rrrrrr  i2    (7.64) 

with the solution 

   
   

rrr

T
r

r
DMK

f̂u
p~

i2 



.   (7.65) 

Equation (7.61) gives the vector of complex displacement amplitudes 

 
    





















n

r
r

r

r

r
T
r

gK

uf̂u
x~

1
2

2

i1



   (7.66) 

where 

  
r

r
r

K

D
g  ,  n,...,,r 21   (7.67) 

are the modal structural damping factors. 
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7.3  Complex damped natural modes 

When a system contains non-proportional damping, i.e. when the 

damping matrix is no longer proportional to the mass and/or stiffness matrix, the 

previously used formulation of the eigenvalue problem will not yield mode shapes 

(eigenvectors) that decouple the system’s equations of motion. In this case the 

system response can be expressed in terms of complex eigenvectors and complex 

eigenvalues [7.6]. 

7.3.1  Viscous damping 

In the general case of viscous damping, the equations of motion can be 

decoupled irrespective of the type of external loading [7.7] but the derivation of the 

response equation is too long to be quoted here [7.8]. The corresponding 

eigenproblem is quadratic and its direct solution is rather complicated. Instead, a 

state space solution is generally adopted [7.9]. 

7.3.1.1  Quadratic eigenvalue problem 

Consider again the equations of motion for the free vibrations of a 

viscously damped system 

           0 xkxcxm  ,  (7.68) 

where  m ,  c  and  k  are symmetric mass, damping and stiffness matrices, 

respectively. 

Seeking solutions of the form  

       ttx  e ,    (7.69) 

we obtain a set of n homogeneous linear algebraic equations, representing the 

quadratic eigenvalue problem 

           02   kcm .  (7.70) 

The condition to have non-trivial solutions 

        0det 2  kcm     (7.71) 

is the characteristic equation. 
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Equation (771) is an algebraic equation of order 2n in   and its solution 

gives a set of 2n eigenvalues r . Corresponding to each eigenvalue r  there exists 

an eigenvector  r  having n components. They satisfy equation (7.70) 

          02  rrr kcm  . n,...,r 21  (7.72) 

 The eigenvectors  r  define the complex damped modes of vibration. 

 For a stable damped system, each of the eigenvalues will be either real and 

negative (for overdamped modes, i.e. modes for which an aperiodic decaying 

motion is obtained) or complex with a negative real part (for underdamped modes). 

If there are complex eigenvalues, they will occur in conjugate pairs 

 rrr  i ,  rrr  i .   (7.73) 

 The imaginary part r  is called the damped natural frequency and the real 

part r  is called the damping factor (exponential decay rate).  

 For a pair of complex conjugate eigenvalues, the corresponding 

eigenvectors are also complex conjugates. The complex conjugates also satisfy 

equation (7.72). Therefore, if all 2n eigenvalues of an n-degree-of-freedom system 

are complex, which means that all modes are underdamped, these eigenvalues 

occur in conjugate pairs, and all eigenvectors will be complex and will also occur 

in conjugate pairs. This latter case will be considered in the following [7.10]. 

Premultiplying (7.72) by  Ts  we obtain 

           02  rrr
T
s kcm  .  sr   (7.74) 

Inverting indices and transposing we get 

           02  rss
T
s kcm  .   (7.75) 

On subtracting (7.75) from (7.74) one finds, for sr  , if sr   , 

           0 r
T
sr

T
ssr cm  .  (7.76, a) 

Substituting the second term from (7.76, a) back in (7.72) we get 

          0 r
T
sr

T
ssr km  .  (7.76, b) 

The orthogonality conditions (7.76) are clearly more complicated than the 

previous set (7.12), (7.13) and (7.43). They only hold at the frequencies 

(eigenvalues) of the modes  r  and  s  to which they apply. 
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Once  r  is known, r  can be obtained from equation (7.72) 

premultiplied by the transpose conjugate  H
r  

                        02  r
H
rr

H
rrr

H
rr kcm  . 

The matrix products in the above equation are entirely real and, by 

analogy with equations (7.19), (7.47) and (7.49), they may be denoted by 
rM , 


rC , and 

rK , respectively. Hence 

2

2

1i
22

rrrr

r

r

r

r

r

r
r

M

K

M

C

M

C
 




























, (7.77) 

where 

     

     r
H
r

r
H
r

r
m

k




 2 , 

     

     r
H
r

r
H
r

rr
m

c




 2 . 

After much tedious algebraic manipulation [7.8], the total response of the 

system can be expressed in the form 

 
 

 
 f̂

Z

TS
x~

n

r
rrrr

rr
 




1 22 ζ2i

i




,  (7.78) 

where  rS ,  rT  and rZ  are real functions of  r  and of the mass and 

damping. The terms of the series (7.78) are not quite the same as the usual single-

degree-of-freedom frequency response function owing to the  rTi  term in the 

numerator. Nevertheless, each term can be evaluated independently of all other 

terms, so the set of modes used in the analysis are uncoupled. Note that the 

frequency dependence in equation (7.78) is confined to the 
2  and i  terms. The 

 rS ,  rT  and rZ  terms do not vary with frequency. 

The analytical solution of the quadratic eigenvalue problem is not 

straightforward. A technique used to circumvent this is to reformulate the original 

second order equations of motion for an n-degree-of-freedom system into an 

equivalent set of 2n first order differential equations, known as ‘Hamilton’s 

canonical equations’. This method was introduced by W. J. Duncan in the 1930’s 

[7.9] and more fully developed by K. A. Foss in 1958 [7.7]. 

7.3.1.2  State space formulation 

In the terminology of control theory, the system response is defined by a 

‘state vector’ of order 2n. In a typical mechanical system, its top n elements give 



7. MODAL ANALYSIS  17 

the displacements and its bottom n elements give the velocities at the n coordinates 

of the system (or vice-versa, depending how the equations are written).  

The equations for the forced vibrations of a viscously damped system are 

            tfxkxcxm   .  (7.79) 

If one adds to equation (7.79) the trivial equation 

        0 xmxm  , 

the resulting equations may be written in block matrix form  

 
   
   

 
 

   
   

 
 

 
  












































00

0

0

f

x

x

m

k

x

x

m

mc




. 

 This matrix equation can also be written as 

        NyByA  ,   (7.80) 

where 

 
   
   








0m

mc
A ,      

   
   










m

k
B

0

0
,      

 
  









0

f
N  (7.81) 

and 

   
 
 









x

x
y


     (7.82) 

is called state vector. 

 The great advantage of this formulation lies in the fact that the matrices 

 A  and  B , both of order 2n, are real and symmetric. 

The solution of (7.80) by modal analysis follows closely the procedure 

used for undamped systems. Consider first the homogeneous equation where 

   0N : 

        0 yByA  .   (7.83) 

The solution of (7.83) is obtained by letting 

       tYty e ,    (7.84) 

where  Y  is a vector consisting of 2n constant elements. 
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Equation (7.84), when introduced in (7.83), leads to the eigenvalue 

problem 

      YAYB  ,   (7.85) 

which can be written in the standard form 

      YYE


1
 ,    (7.86) 

where the companion matrix 

              
    










 





0

11
1

I

mkck
ABE , (7.87) 

is real non-symmetric of order 2n and  I  is the identity matrix of order n. 

In general  B  will have an inverse except when the stiffness matrix is 

singular, i.e. when rigid-body modes are present. 

Equations (7.86) can be written 

        0
1









 YIE


,   (7.88) 

where  I  is the identity matrix of order 2n. They have non-trivial solutions if 

     0
1

det 







 IE


,    (7.89) 

which is the characteristic equation.  

 Solution of equation (7.89) gives the 2n eigenvalues. 

Corresponding to each eigenvalue r  there is an eigenvector  rY  having 2n 

components. There are 2n of these eigenvectors. They satisfy equation (7.85) 

      rrr YAYB  .   (7.90) 

Consider the square complex matrix  Y , constructed having the 2n 

eigenvectors  rY  as columns, and the diagonal matrix  Λ  whose diagonal 

elements are the complex eigenvalues 

       






 nYYYY 221  ,   Λ  rdiag . (7.91) 
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Orthogonality of modes 

The proof of the orthogonality of eigenvectors can proceed in the same 

way as for the undamped system. 

Write equations (7.91) as 

        YAYB  .   (7.92) 

Premultiply equation (7.92) by  T
Y  to obtain 

            YAYYBY
TT

 .  (7.93) 

Transpose both sides, remembering that  A  and  B  are symmetric and  

   is diagonal, and obtain 

            YAYYBY
TT

 .  (7.94) 

From equations (7.93) and (7.94) it follows that 

            YAYYAY
TT

  .  (7.95) 

Thus, if all the eigenvalues r  are different, then     YAY
T

 is a 

diagonal matrix, and from equations (7.93) or (7.94) also     YBY
T

 is 

diagonal. 

We can denote 

       aYAY
T

 ,       bYBY
T

 ,  (7.96) 

which means 

     rr
T
r aYAY  ,       rr

T
r bYBY  , 

     0r
T
s YAY ,       0r

T
s YBY , sr  . 

These orthogonality conditions state that both  A  and  B  are 

diagonalized by the same matrix  Y . The diagonal matrices  a  and  b  can be 

viewed as normalization matrices related by 

       ba
1

 .    (7.97) 

For a complex eigenvector only the relative magnitudes and the 

differences in phase angles are determined. The matrices  a  and  b  are 

complex. Hence the normalization of a complex eigenvector consists of not only 
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scaling all magnitudes proportionally, but rotating all components through the 

same angle in the complex plane as well. 

The matrix  Y  can be viewed as a transformation matrix which relates 

the system coordinates  y  to a set of modal coordinates  z  

      zYy  .     (7.98) 

Steady-state harmonic response 

Consider now the non-homogeneous equations (7.80) and determine the 

steady-state response due to sinusoidal excitation     tf̂f ie . For 

      tN̂N ie , 

      ty~y ie ,           tz~z ie ,  (7.99) 

equation (7.80) can be written as 

        N̂y~By~A i .   (7.100) 

Substituting (7.98) into (7.100), premultiplying by  TY  and taking into 

account the orthogonality properties (7.96), we obtain 

          N̂Yz~ba
T

i .  (7.101) 

This is a set of 2n uncoupled equations, from which  z~  can be obtained as  

           N̂Ybaiz~
T1

    (7.102) 

and  y~  from equation (7.98) as 

             N̂YbaiYy~
T1

  .  (7.103) 

Since in the underdamped case, in which we are primarily interested, all 

eigenvectors are complex and occur in conjugate pairs, based on (7.69) and (7.82), 

the matrix  Y  can be partitioned as follows 

       
       


















Y ,  (7.104) 

where    is a diagonal matrix of order n, which contains the complex 

eigenvalues with positive imaginary part, and    is called the complex modal 

matrix of order n, which contains the complex vectors of modal displacements, 

corresponding to the eigenvalues in   . Matrices    and    are the 

complex conjugates of    and   , respectively. 
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From equations (7.102), (7.103) and (7.104) it follows that the top n 

components of  y~  can be written as  

  
         f̂

baba
x~

n

r rr

H
rr

rr

T
rr



























1
ii 






,  (7.105) 

where ra  and 
ra  are respectively the top n and bottom n components of the 

diagonal matrix  a , and rb  and 
rb  are respectively the top n and bottom n 

components of the diagonal matrix  b . 

As we know that 

  
r

r
r

a

b
 , 




 

r

r
r

a

b
 ,   (7.106) 

equation (7.105) can also be written 

  
   
 
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r rr
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T
rr


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


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




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









1
ii 






.  (7.107) 

Equation (7.107) represents the steady-state response to sinusoidal forces 

of amplitudes  f̂  in terms of the complex modes  r  and  r   n,..,,r 21 . 

Comparison of complex and real modes 

Complex modes  r  can be represented in the complex plane by vector 

diagrams, in which each component of the modal vector is represented by a line of 

corresponding length and inclination, emanating from the origin. Figure 7.2 shows 

the ‘compass plots’ of two almost real modes  

 

Fig. 7.2 
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In the case of non-proportional damping, the complex conjugate 

eigenvectors are of the form 

      rrr  i ,       rrr  i


.  (7.108) 

The free vibration solution can be written as the sum of two complex 

eigensolutions associated with the pair of eigenvalues and eigenvectors 
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 (7.109) 
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 (7.109, a) 

The motion is represented by the projection on the real axis of the 

components of rotating vectors. The contribution of the r-th mode to the motion of 

a point j can be expressed as 

      tttx rrjrrj
t

rj
r 

sincose2 


, (7.110) 

or 

      rrrrj
t

rj ttx r 



cose2 , (7.110, a) 

where 

  
rj

rj
r




 1tan . 

The components of   rtx , plotted as vectors in the complex plane, 

rotate at the same angular velocity r , and all decay in amplitude at the same rate 

r , but each has a different phase angle in general, while the position relative to 

the other coordinates is preserved. 

The motion is synchronous, but each coordinate reaches its maximum 

excursion at a different time than the others. However, the sequence in which the 

coordinates reach their maximum remains the same for each cycle. Furthermore, 

after one complete cycle, the coordinates are in the same position as at the 

beginning of the cycle. Therefore, the nodes (if they may be termed as such) 

continuously change their position during one cycle, but during the next cycle the 

pattern repeats itself. Of course, the maximum excursions decay exponentially 

from cycle to cycle. 

Complex modes exhibit non-stationary zero-displacement points, at 

locations that change in space periodically, at the rate of vibration frequency. 



7. MODAL ANALYSIS  23 

In the case of proportional damping, the complex mode shape  r  in 

equation (7.108) is replaced by a real mode  ru . The angle r  is either 00  or 

0180  depending on the sign of rju . The components of   rtx  in the complex 

plane rotate at the same angular velocity r  with amplitudes decaying 

exponentially with time and uniformly over the system, at a rate r , but lie on the 

same line (they are in phase or 
0180  out of phase with each other). All points reach 

maximum departures from their equilibrium positions or become zero at the same 

instants.  

Real modes exhibit stationary nodes. 

7.3.2  Structural damping 

Consider the equations of the forced harmonic motion of a system with 

structural damping 

             tef
~

xdikxm i , (7.111) 

where  m  and  dk i  are symmetric matrices of order n,  f
~

 is a complex 

vector of excitation forces and  

      tx~x ie ,    (7.112) 

where  x~  is the vector of complex displacement amplitudes. 

 Denoting  2
, consider the homogeneous equation 

        0i  x~mdk  .   (7.113) 

 Equations of this sort for structural damping are usually regarded as being 

without physical meaning, because they are initially set up on the understanding 

that the motion they represent is forced harmonic. However, there is no objection 

[7.10] to defining damped principal modes  r  of the system as being the 

eigenvectors of this equation, corresponding to which are complex eigenvalues r  

satisfying the homogeneous equation 

         0i  rr mdk  .  (7.114) 

In the following it is considered that the n eigenvalues are all distinct, and 

the corresponding modal vectors are linearly independent. 
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 Mead [7.10] showed that such complex damped modes do have a clear 

physical significance if they are considered damped forced principal modes. 

 Indeed, let take  f
~

 to be a column of forces equal to gi  times the inertia 

forces corresponding to the harmonic vibration (7.112) 

     x~mgf
~ 2i  .    (7.115) 

 Substituting (7.112) and (7.115) into equation (7.111) we find 

          0i1i 2  x~mgdk  . (7.116) 

Consider first the special case of proportional damping, in which 

   kd  . We then have 

           0i1i1 2  x~mgk    (7.117) 

which is satisfied by g  and real vectors    ux~  . 

 By equating to zero both real and imaginary parts we have 

         02  umk     (7.118) 

which yields the undamped principal modes and natural frequencies. Thus, if 

damping is distributed in proportion to the stiffness of the system, the undamped 

modes can be excited at their natural frequencies by forces which are equal to gi  

times the inertia forces. The damped forced normal modes are then identical to the 

undamped normal modes. 

 When the damping matrix is not proportional to the stiffness matrix, there 

is no longer a unique value of  . Equation (7.117) must be retained in its general 

form, and the complex eigenvalues  rr gi12   and corresponding complex 

modal vectors  r  satisfy the equation 

           0ii12  rrr dmgk  .  (7.119) 

It is easy to show that the modal vectors satisfy the orthogonality conditions 

    

     ,dk

,m

r
T
s

r
T
s

0i

0








  sr    (7.120) 

which do not contain the frequency of excitation or the natural frequencies of 

modes. 

 Equation (7.119) may be premultiplied by  Tr  to show that 
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     rrrr MgK i12  ,    (7.121) 

where 

  
    

     ,dkK

,mM

r
T
rr

r
T
rr





i


 n,...,,r 21   (7.122) 

are the ‘complex modal mass’ and the ‘complex modal stiffness’, respectively. 

 As the n eigenvectors are linearly independent, any vector  x~  in their 

space can be expressed as linear combination of the eigenvectors 

      




n

r

rr wwx~

1

 ,   (7.123) 

where rw  are principal damped coordinates and    is a square matrix having the 

 r ’s as its columns. 

 Substituting (7.123) in (7.111) and using equations (7.120)-(7.122), we get 
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rr

T
r

r
MK

f̂
w

2




     (7.124) 

which has the form of a single degree of freedom frequency response function, 

resonating at the frequency r  with the loss factor rg . The system vibrates in the 

complex mode  r . 

 Hence, the solution of equation (7.111) is 

 
    

 
 



n

r rr

r
T
r

M
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1
2


,   (7.125) 

in which 

   rr

r

r
r g

M

K
i12   .   (7.126) 

 The displacement at coordinate j produced by a harmonic force applied at 

coordinate   is given by 



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r r
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.  (7.127) 
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Denoting the complex modal constant 

r

rrj
rj

M
A





 ,     (7.128) 

the complex displacement amplitude (7.127) becomes 




f̂
g

A
x~

n

r rrr

rj
j 

 


1
222 i 

.   (7.129) 

7.4  Forced monophase damped modes 

Apart from the complex forced vibration modes discussed so far, there is 

another category of damped vibration modes defined as real forced vibration 

modes. These are described by real monophase vectors whose components are not 

constant, but frequency dependent, and represent the system response to certain 

monophase excitation forces. They are independent of the type of damping, 

viscous, structural, frequency dependent or a combination of these. At each 

undamped natural frequency, one of the monophase response vectors coincides 

with the corresponding real normal mode. The real forced vibration modes are 

particularly useful for the analysis of structures with frequency dependent stiffness 

and damping matrices. The existence of modes of this general type appears to have 

been pointed out first by Fraeijs de Veubeke [7.11], [7.12]. 

7.4.1  Analysis based on the dynamic stiffness matrix 

For harmonic excitation, the equations of motion (7.40) and (7.56) of a 

system with combined viscous and structural damping can be written 

              tef̂xkxdcxm 



i1









  , (7.130) 

where the system square matrices are considered real, symmetric and positive 

definite, and  f̂  is a real forcing vector. 

Assuming a steady-state response (7.112) 

       tx~tx ie , 

where  x~  is a vector of complex displacement amplitudes, equation (7.130) 

becomes 
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            f̂x~dcmk   i2  

or 

       f̂x~Z i ,    (7.131) 

where   iZ  is referred to as the dynamic stiffness matrix. 

This can be written 

          IR ZZZ ii  ,  (7.132) 

where the real part and the imaginary part are given by 

       mkZR
2  ,       dcZI  . 

The same formulation applies in the case of frequency dependent 

stiffness and damping matrices 

        mkZR
2  ,        dcZI   , 

and, in fact, is independent of the type of damping. 

Following the development in [7.13], it will be enquired whether there 

are (real) forcing vectors  f̂  such that the complex displacements in  x~  are all 

in phase, though not necessarily in phase with the force. For such a set of 

displacements, the vector  x~  will be of the form 

      ie  x̂x~ ,    (7.133) 

where  x̂  is an unknown vector of real amplitudes and   is an unknown phase 

lag. Substitution of this trial solution into equation (7.131) yields 

       f̂x̂ZZ IR   sinicosi . 

Separating the real and imaginary parts, we obtain 

 
       

       ,f̂x̂ZZ

,x̂ZZ

IR

RI









sincos

0sincos
  (7.134) 

or 

 
     
      .f̂x̂Z

,f̂x̂Z

I

R





sin

cos




    (7.135) 
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Denoting 

  



 1tan

sin

cos  ,    (7.136) 

equations (7.134) become 

 

        

        .f̂x̂ZZ

,x̂ZZ

IR

IR






sin

1

0





  (7.137) 

Denoting 

  ,
21

1
sin





  ,

21
cos







  (7.138) 

we obtain 

      x̂Zx̂Z IR  ,   (7.139) 

           f̂x̂Zx̂Z IR
21   .  (7.140) 

Provided that 0cos  , 0 , equation (7.139) has the form of a 

frequency-dependent generalized symmetric eigenvalue problem. The eigenvalues 

  are solutions of the algebraic equation 

      0det  IR ZZ  .   (7.141) 

For each root r , there is a corresponding modal vector  r  satisfying 

the equation 

        0 rIrR ZZ  .   (7.142) 

Both r  and  r  are real and frequency dependent. 

Substituting r  and  r  into equation (7.140) we obtain 

          rrrIrRr ZZ  21 .  (7.143) 

where  r  is the corresponding force vector required to produce  r . 

Vectors  r , referred to as monophase response modal vectors, 

represent a specific type of motion in which all coordinates execute synchronous 

motions, having the same phase shift r  with respect to the force vectors. Their 

spatial shape varies with the frequency. They are produced only by the external 

forcing defined by the monophase excitation modal vectors  r  derived from 

equation (7.143). 
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Mode labeling 

Consider now the way in which the phase angles r  and the vectors 

 r  are labeled. When equation (7.141) was derived from equation (7.139), it 

was assumed that 0cos  . If, however, 0cos  , equation (7.139) becomes 

    0RZ ,         02   mk , (7.144) 

and the condition for    to be non-trivial is that 

       0det 2  mk  .    (7.145) 

This means that   must be an undamped natural frequency. If then 

s  , the    mode corresponding to this value of   and the solution 

0cos   may be identified with the s-th real normal mode  su . If the   solution 

and the corresponding value of    are labeled s  and  s , respectively, then 

one may write 

 
2


 s ,    ss u , when s  .  (7.146) 

For this value of   there will also be 1n  other  r  modes 

corresponding to the remaining 1n  roots r  of equation (7.141). 

Equation (7.146) may be used to give a consistent way of labeling the   

and the    for values of   other than the undamped natural frequencies [7.13]. 

Each of the roots   of equation (7.141) is a continuous function of  , so that 

   , and    . Equation (7.142) shows that 

  
    

    rI
T
r

rR
T
r

rr
Z

Z




  1tan .  (7.147) 

When 0 , r  is a small positive angle. As   grows and approaches 

1 , one of the roots    will tend to zero, and    will approach the value 

2 ; let this angle be labeled  1 . 

As   is increased,  1  grows larger than 2  and when it is 

increased indefinitely,  1  will approach the value  . The remaining 1n  

angles  s  may be labeled in a similar way:  s  is that phase shift which 

has the value 2  when s  . The angles r  are referred to as characteristic 

phase lags. 

The forced modes are labeled accordingly. At any frequency s , the 

shape of the s-th forced mode is given by the solution   s  of 
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        0tan 1  
sIsR ZZ  .  (7.148) 

Thus,  s  is the forced mode which coincides with  su  when s  . 

Orthogonality 

It may be shown that the modal vectors satisfy the orthogonality conditions 

     

      .Z

,Z

rI
T
s

rR
T
s

0

0








  sr    (7.149) 

These conditions imply that 

        0 s
T
rr

T
s  ,  sr    (7.150) 

hence an excitation modal vector  r  introduces energy into the system only in 

the corresponding response modal vector  r . 

Damped modal coordinates 

If a square matrix    is introduced, which has the monophase response 

modal vectors as columns 

       






 n 21 ,   (7.151) 

then the motion of the system can be expressed in terms of the component motions 

in each of the forced modes  r . Thus the vector of complex displacements  x~  

may be written 

      




n

r

rr p~p~x~

1

 ,   (7.152) 

where the multipliers rp~  are the damped modal coordinates. The linear 

transformation (7.152) is used to uncouple the equations of motion (7.130). 

Steady state response 

Substituting (7.152) into (7.131) and premultiplying by  T
  we obtain 

             f̂p~Z
TT

 i ,  (7.153) 

or 

               f̂p~zz
T

IR   i , (7.154) 

where, due to the orthogonality relations (7.149), 



7. MODAL ANALYSIS  31 

         R
T

R Zz  ,          I
T

I Zz  , (7.155) 

are both diagonal matrices. 

The solution of the r-th uncoupled equation (7.154) is 

   
   

rr IR

T
r

r
zz

f̂
p~

i



.    (7.156) 

 Substituting the damped modal coordinates (7.156) into (7.152) we obtain 

the solution in terms of the monophase response modal vectors 

   
    

                





n

r r
T
rr

T
r

r
T
r

dcmk

f̂
x~

1
2 i 


.   (7.157) 

Normalization 

The response modal vectors  r  can be normalized to unit length 

      1r
T
r  .     (7.158) 

It is convenient to normalize also the excitation modal vectors  r  to 

unit length 

      1r
T
r  .     (7.159) 

Next, a new set of ‘phi’ vectors  r  is introduced, 

     rrr Q       (7.160) 

using the frequency dependent scaling factors [7.14] 

  
    rIr

r
r

Z
Q




T

sin
 ,    (7.161) 

and a new set of ‘gamma’ vectors  r  

     rrr Q   ,    (7.162) 

so that 

          rsr
T
sr

T
s   ,   (7.163) 

where rs  is the Kronecker delta. The two sets of frequency dependent monophase 

modal vectors form a bi-orthogonal system. While the response vectors are right 
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eigenvectors of the matrix pencil     IR Z,Z , the excitation vectors are left 

eigenvectors of that pencil. 

Equation (7.163) implies 

     
r

r
T
r

Q

1
 .    (7.164) 

Equations (7.135) become 

 
     

      .Z

,Z

rrrI

rrrR





sin

cos




   (7.165) 

which, using (7.163), can be written 

     

      .Z

,Z

rrI
T
r

rrR
T
r





sin

cos




   (7.166) 

Introducing the square modal matrix   , which has the normalized 

monophase response modal vectors as columns 

       






 n 21 ,  (7.167) 

equations (7.166) yield 

       rR
T

Z  cos ,   (7.168, a) 

       rI
T

Z  sin ,   (7.168, b) 

and 

         rZ
T  i

e .   (7.169) 

The dynamic stiffness matrix is given by 

          1i
e


  rT

Z .   (7.170) 

Its inverse, the dynamic flexibility or frequency response function (FRF) 

matrix, is 

           TrHZ  i1
e


 .  (7.171) 

The FRF matrix has the following modal decomposition 

       Tr
n

r

r
rH 






1

i
e    (7.172) 
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or, in terms of the unscaled vectors  

       Tr
n

r

rr
rQH 






1

i
e .   (7.173) 

Example 7.1 

The four degree-of-freedom lumped parameter system from Fig. 7.3 is 

used to illustrate some of the concepts presented so far. The system parameters are 

given in appropriate units  msNmNkg ,, .  

The mass, stiffness and viscous damping matrices are [7.15], 

respectively, 

    2123diagm , 

 



























1300sym
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50120340

408060200

k ,   











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














52sym

603

50803

0160903

.

.

..

...

c . 

The system has non-proportional damping. 

 

Fig. 7.3 

The undamped natural frequencies  2r  and the real normal modes 

 ru  (of the associated conservative system) are given in Table 7.1. 
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Table 7.1.  Modal data of the 4-DOF undamped system 

Mode 1 2 3 4 

r , Hz 1.1604 2.0450 3.8236 4.7512 

 1 -0.26262 -0.06027 -0.02413 

Modal 0.37067 1 -0.17236 -0.06833 

vector 0.18825 0.18047 0.78318 1 

 0.08058 0.07794 1 -0.40552 

The real normal modes are illustrated in Fig. 7.4. 

 

Fig. 7.4  

The damped natural frequencies, the modal damping ratios and the 

magnitude and phase angle of the complex mode shapes are given in Table 7.2. 

Table 7.2.  Modal data of the 4-DOF damped system 

Mode 1 2 3 4 

r , Hz 1.1598 2.0407 3.8228 4.7423 

r  0.0479 0.0606 0.0313 0.0500 

 1 0 0.26473 -173.3 0.06210 -167.3 0.02378 -178.5 

Modal 0.37067 3.66 1 0 0.17322 -174.4 0.06882 -171.9 

vector 0.18825 3.52 0.18047 2.06 0.77950 -6.86 1 0 

 0.08058 7.33 0.07794 3.88 1 0 0.40241 172.29 
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Fig. 7.5 

 
Fig. 7.6 (from [7.16]) 
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Fig. 7.7 (from [7.16]) 

 
Fig. 7.8 
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 The real eigenvalues of the generalized eigenproblem (7.142) are plotted 

versus frequency in Fig. 7.5. The monophase modal response vectors are illustrated 

in Fig. 7.6. The monophase modal excitation vectors are presented in Fig. 7.7. The 

characteristic phase lags are shown as a function of frequency in Fig. 7.8. 

7.4.2  Analysis based on the dynamic flexibility matrix 

The steady state response to harmonic excitation (7.131) has the form 

        f̂Hx~ i ,    (7.174) 

where the frequency response function (FRF) matrix   iH , also called the 

dynamic flexibility matrix, is the inverse of the dynamic stiffness matrix 

            IR HHZH iii
1




. (7.175) 

The elements of the FRF matrix are measurable quantities. The element 

jh  is the dynamic influence coefficient, defining the response at coordinate j due 

to unit harmonic excitation applied at coordinate  . 

The complex displacement amplitude can be written as 

       IR xxx~ i ,    (7.176) 

where the in-phase portion of the response is 

       f̂Hx RR  ,    (7.177) 

and the out-of-phase portion is  

       f̂Hx II  .    (7.178) 

 The following useful relationships can be established between the dynamic 

stiffness matrix and the FRF matrix 

           

            .HHHZ

,HHHZ

II

RR

11

11

ii

ii












 (7.179) 

It has been shown that, at each forcing frequency  , there are n monophase 

excitation vectors  r  which produce coherent-phase displacements of the form 

     r
rx~

 i
e


 ,     (7.180) 

having the same phase lag r  with respect to the excitation, defining real 

monophase response vectors  r . 
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 To see whether such a property may hold, a trial solution of equation 

(7.174) is sought of the form (7.133) 

      ie  x̂x~ ,    (7.181) 

where  x̂  has real elements and the phase shift   is common to all coordinates. 

This is equivalent to considering that the in-phase portion of response  Rx  is 

proportional to the out-of-phase portion  Ix , i.e. 

      IR xx  ,    (7.182) 

where 

    1tan .     (7.183) 

 Substitution of (7.181) into (7.174) yields 

       f̂HHx̂ IR  sinicosi  . (7.184) 

 Considering the real and imaginary parts separately, one finds 

 
       

       ,f̂HH

,x̂f̂HH

RI

IR

0sincos

sincos








  (7.185) 

or 

 
     

      .x̂f̂H

,x̂f̂H

I

R





sin

cos




   (7.186) 

Dividing by sin  we obtain 

 
       
        ,x̂f̂HH

,f̂Hf̂H

IR

IR

21 






  (7.187) 

where 





 1tan

sin

cos  , 
21

1
sin





 ,   

21
cos







 . (7.188) 

The first equation (7.187) is homogeneous. Provided that 0cos  , 

0 , this equation has the form of a frequency-dependent generalized symmetric 

eigenvalue problem.  

The condition for  f̂  to be non-trivial is 

      0det  IR HH  . 
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There are n eigenvalues  r , solutions of the above algebraic equation. 

For each root r  there is an excitation modal vector  r  satisfying the equation 

        0 rIrR HH  .   (7.189) 

 The eigenvalues are given by 

  
    

    rI
T
r

rR
T
r

rr
H

H







 1tan .  (7.190) 

 Both the eigenvalues r  and the excitation eigenvectors  r  are real and 

frequency dependent. Different sets of r ’s and  r ’s are obtained for each 

frequency  . 

Substituting r  and  r  into the second equation (7.187), the response 

modal vectors  r  are obtained from 

        rrrIrR HH  21 ,  (7.191) 

where  r  is the response vector produced by the monophase excitation  r . 

Equations (7.186) can also be written 

 
     

      .H

,H

rrrI

rrrR





sin

cos




   (7.192) 

The excitation modal vectors satisfy the orthogonality relations 

     

      .H

,H

rI
T
s

rR
T
s

0

0








  sr    (7.193) 

These conditions imply that 

        0 s
T
rr

T
s  ,  sr    (7.194) 

hence an excitation modal vector  r  develops energy only in the corresponding 

response modal vector  r . 

Response at the undamped natural frequencies 

If 0 , then 0cos  , 
090  and the response is in quadrature with 

the excitation. The first  equation (7.137) becomes 
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        0f̂HR  .    (7.195) 

 The condition to have non-trivial solutions is  

      0det RH .    (7.196) 

The roots of the determinantal equation (7.196) are the undamped natural 

frequencies r   n,...,r 1 . The latent vectors of the matrix   rRH   are the 

vectors of the forced modes of excitation  r  so that 

        0rrRH  .   (7.197) 

Premultiplying in (7.195) by   iZ , and using (7.179), one obtains 

                      0ii  x~Zf̂HZf̂HZ RRR   

which, using notation (7.181), yields 

       0x̂ZR  ,    (7.198) 

or 

         02  x̂mk  .   (7.199) 

The only solution to equation (7.199) is the normal mode solution, i.e.   

must be a natural undamped frequency r  and  x̂  must be a normal mode vector 

 ru  satisfying the eigenvalue problem (7.7). 

It follows that at r  , the r-th eigenvalue   0rr  , the r-th 

characteristic phase lag   090rr  , the r-th response modal vector becomes the 

r-th normal undamped mode     rrr u  and the r-th excitation modal 

vector becomes the forcing vector appropriated to the r-th natural mode 

    rrr   . 

The second equation (7.187) becomes 

       rrrI uH      (7.200) 

where the vectors  r  (different from those defined in Section 7.2.1.6) are 

             rrrrIr udcuZ   .  (7.201) 

Normalization 

The excitation modal vectors  r  can be normalized to unit length 

      1r
T
r  .     (7.202) 
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Next, a new set of ‘gamma’ vectors  r  is introduced, 

     rrr Q   ,    (7.203) 

using the frequency dependent scaling factors 

  
    rIr

r
r

H
Q








T

sin
   (7.204) 

and correspondingly a new set of ‘phi’ vectors  r  

     rrr Q       (7.205) 

which satisfy the bi-orthogonality conditions (7.163) 

          rsr
T
sr

T
s   ,   (7.206) 

where rs  is the Kronecker delta. While the excitation vectors are right 

eigenvectors of the matrix pencil     IR H,H  , the response vectors are left 

eigenvectors of that pencil. 

Equation (7.206) implies 

     
r

r
T
r

Q

1
 .    (7.207) 

Equations (7.192) become 

 
     

      .H

,H

rrrI

rrrR





sin

cos
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
   (7.208) 

which, using (7.206), can be written 

     

      .H

,H

rrI
T
s

rrR
T
s





sin

cos




   (7.209) 

Introducing the square modal matrix   , which has the normalized 

monophase excitation modal vectors as columns 

       






 n 21 ,  (7.210) 

equations (7.209) yield 

       rRZ  cos
T

 ,   (7.211) 

       rIH  sin
T

 ,   (7.212) 
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and 

         rH
T  i

e


 .   (7.213) 

The FRF matrix is given by 

          1i
e


  rT

H .   (7.214) 

Its inverse, the dynamic stiffness matrix, is 

         TrZH  i1
e


.  (7.215) 

The dynamic stiffness matrix has the following modal decomposition 

       Tr
n

r
r

rZ 




1

i
e    (7.216) 

or, in terms of the unscaled vectors,  

       Tr
n

r
rr

rQZ 




1

i
e .   (7.217) 

The bi-orthogonality conditions and (7.167) imply 

      T
  .     (7.218) 

Energy considerations 

During a cycle of vibration, the complex energy transmitted to the 

structure by the excitation   tie  r  is 

           reWWW r
T
rIR

 i
iii


 ,  (7.219) 

         r
T
r HW  iii  .  (7.220) 

The active energy, actually dissipated in the system, is 

         0sin  rrI
T
rR HW  . (7.221) 

The reactive energy is 

         rrR
T
rI HW  cos .  (7.222) 

It follows that rsin  is a measure of the relative modal active energy and 

rcos  is a measure of the relative modal reactive energy [7.17] 
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
 , 

22
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IR

I
r

WW

W


 .  (7.223) 

7.4.3  Proportional damping 

The forced modes of excitation  r  defined in equation (7.197) 

        0rrRH   

form a complete linearly independent set, or base, of the vectorial space. An 

expansion of  f̂  is thus always possible (and unique) of the form 

      



n

r
rr

ˆˆf̂
1

 ,   (7.224) 

where    is the square matrix having the principal modes of excitation  r  as 

columns and  ̂  is a vector of scalar multipliers. 

Substitution of (7.224) into the second equation (7.185) and 

premultiplication by   T
 , yields 

         ,ˆ 0sincos     (7.225) 

where, in the case of proportional damping,  

        R
T

H ,   (7.226) 

        I
T

H ,    (7.227) 

are diagonal matrices [7.18]. 

Indeed, the dynamic stiffness matrix can be written 

              1
ii


 uuZuuZ

TT
 ,  (7.228) 

or 

          1
ii


 uzuZ

T
 ,  (7.229) 

where 

          uZuz
T

 ii  ,   (7.230) 

                 udcmkuz
T

  ii 2 ,  (7.231) 
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or, using equations (7.12), (7.13), (7.43) and (7.57), for proportional damping 

             DCMKz   ii 2 .  (7.232) 

The FRF matrix can be written 

           T
uhuZH  iii

1



,  (7.233) 

where 

         
  















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

rrrr DCMK
zh


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i

1
diagii

2

1
. (7.234) 

According to (7.201) 

          rrr
TT

DCuu   diag .  (7.235) 

 It follows that the matrix product 

                            iii 
TTT

uhuH (7.236) 

is indeed a diagonal matrix.  

 If 0cos  , equation (7.225) becomes 

          ,ˆ
rr 0     (7.237) 

where the eigenvectors are of the form 

      rrrr
ˆIˆ       (7.238) 

in which  rI  is the r-th column of the identity matrix. Due to the diagonal form 

of the characteristic matrix, the only non-zero element in  r̂ is the r-th element 

rr̂ . 

Comparison with equation (7.189) shows that the excitation modal vector 

 r  is a solution of equation (7.237), being proportional to the r-th principal 

mode of excitation  

         rrrrr
ˆˆf̂   .  (7.239) 

This way it has been demonstrated [7.18] that, in the case of proportional 

damping, the excitation modal vectors  r  are no longer dependent on the 

excitation frequency  . The same applies to the response modal vectors  r  

[7.13]. This property can be used as a criterion to identify whether the damping is 

proportional or non-proportional in an actual structure. 
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Example 7.2 

The two-degree-of-freedom system from Fig. 7.9 will be used to illustrate 

the foregoing theoretical results. The mass and stiffness coefficients are 

kg0259021 .mm  , mN10031  kk , and mN502 k  [7.19].  

 

Fig. 7.9 

The undamped natural frequencies are secrad128621 . , 

secrad863872 .  and the (orthonormalized) normal modal vectors are 
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Case I.  Nonproportional damping.  

Consider the following damping coefficients: mNs31 c , mNs22 c , 

mNs13 c . The modal matrices are  
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a b 

Fig. 7.10 (from [7.18]) 
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The orthonormalized appropriated force vectors are 

  
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The frequency dependence of the elements of excitation modal vectors is 

shown in Fig. 7.10 and that of the response modal vectors in Fig. 7.11. The strong 

variation with frequency of these components proves the existence of 

nonproportional damping. 

 

  
a b 

Fig. 7.11 (from [7.18]) 

Case II.  Proportional damping.  

If mNs21 c , mNs12 c , mNs23 c , the modal damping matrix is 

diagonal  

    









40

02
C , 

denoting proportional damping. 

The orthonormalized appropriated force vectors are 

  
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The elements of the modal vectors  r  and  r  are plotted in Figs. 

7.10 and 7.11 with dotted lines. Their graphs are horizontal straight lines. This 

independence of frequency proves the existence of proportional damping.  
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7.5  Rigid-body modes 

Motion as a rigid body can occur in addition to elastic deformation in 

unsupported structures. Such systems have one or more rigid-body modes, that is, 

modes in which there is no structural deformation. This is true for aerospace 

vehicles in flight, like airplanes and rockets, whose structure is free to move as a 

rigid body without deformation. 

The concept is extended in practice to elastically supported structures. 

These have a few lowest modes in which only the supporting springs deform and 

the structure is practically undeformed. They are not genuine rigid-body modes and 

are called like that only for convenience.  

For unsupported structures, the stiffness matrix is singular (its 

determinant is zero) and the flexibility matrix is indeterminate (by nature of its 

definition, it must be found relative to supports). These difficulties can be 

overcome for the stiffness matrix, by a condensation process, and for the flexibility 

matrix, by introducing artificial supports. The two methods of analysis are 

presented in the following for undamped systems. 

Rigid-body modes have a frequency of zero. An eigenvalue problem that 

results in one or more zero eigenvalues is called a semidefinite eigenvalue problem 

and the stiffness matrix is semipositive definite.  

7.5.1  Flexibility method 

Consider a vibratory system whose motion is defined by a set of n total degrees 

of freedom (DOFs) consisting of Rn  rigid-body DOFs and En  elastic DOFs 

  ER nnn  .     (7.240) 

The vector of total displacements  x  can be expressed as 

         EERR qAqAx  ,   (7.241) 

where  Rq  are rigid body displacements,  Eq  are elastic displacements, and 

 RA  and  EA  are transformation matrices. 

Example 7.3 

A uniform flexible beam carries five equal equidistant lumped masses as in 

Fig. 7.12, a. Only the vertical displacements are considered as degrees of freedom. 

The vector of displacements is 
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   x  54321 xxxxx T . 

The two rigid-body modes are defined by the translation 1Rq  and the 

rotation 2Rq  (Fig. 7.12, b) with respect to the center of mass 
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The rigid body effects are defined by 
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The system has three deformation modes. To eliminate the Rq ’s we 

introduce supports as in Fig. 7.12, c (one possibility). 

 
Fig. 7.12 

The structural deformation effects are defined by 
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    


































































3

2

1

5

4

3

2

1

000

100

010

001

000

E

E

E

EE

E

q

q

q

qA

x

x

x

x

x

. 

 

Rigid-body motion involves no deformation, so that no forces are 

required to produce it, i.e. 

             0 RRRR qAkxkf . (7.242) 

Since  Rq  is arbitrary, we get 

       0RAk     (7.242, a) 

or transposing 

       0kA
T

R .    (7.243) 

The equation of free vibrations of the undamped system is (7.2) 

       0 xkxm  .   (7.244) 

Premultiplying by  T
RA  we get 

           0 xkAxmA
T

R
T

R  , 

where the second term is zero according to (7.243). 

The remaining equation is 

      0xmA
T

R  , 

expressing the overall equilibrium of the inertia forces. For simple harmonic 

motion, in which 

     xx 2 , 

the above equation becomes 

      0xmA
T

R .    (7.245) 

The elastic deformations are given by 

             fqAxqAx RREEE  , 

where    is the elastic flexibility matrix and  f  are the inertia forces. 

Thus 



50                                                                                           MECHANICAL VIBRATIONS 

          xmqAx RR  , 

or 

            0 xmqAx RR  .  (7.246) 

For simple harmonic motion    xx 2 , hence 

            02  xmqAx RR  . (7.247) 

Premultiplying by    mA
T

R  we get 

                     02  xmmAqAmAxmA
T

RRR
T

R
T

R  .  (7.248) 

The first term is zero, according to (7.245) hence 

             xmmAmq
T

RRR 
12 

 ,  (7.249) 

where 

         R
T

RR AmAm     (7.250) 

is the mass matrix corresponding to the rigid-body freedoms. It is a diagonal matrix 

if  RA  is calculated with respect to the center of mass of the system. 

Substituting for  Rq  in (7.247) we obtain 

                   0212 


xmxmmAmAx
T

RRR  , 

or 

          mI   2    0x ,  (7.251) 

where 

             mAmAI
T

RRR
1

   (7.252) 

is called the release matrix. It effectively releases the “supports”. 

Note that, for supported systems and harmonic solution, equation (7.244) 

is written 

        mI 2    0x ,   (7.253) 

where  

      mD       (7.254) 

is called the dynamical matrix. 

By comparison with (7.251), for unsupported systems we can define a 

matrix with the same meaning 

        mD  ,    (7.255) 
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where    is the flexibility matrix of the “supported” structure, obtained by 

putting Rn  displacements equal to zero. It is singular and will contain rows and 

columns of zeros corresponding to the statically determinate constraints 

(“supports”). 

Example 7.4 

Determine the natural modes of vibration in the vertical plane for the free-

free beam with lumped masses from Fig. 7.13, a , taking as degrees of freedom 

only the vertical translations. 

 

Fig. 7.13 

Solution. The vector of displacements is  

   x  4321 xxxx T . 

Calculating moments about 1, the position of the center of mass is  

  


5

8

5

322





m

mmm
x . 

The two rigid-body modes are defined by coordinates 1Rq  and 2Rq  (Fig. 

7.13, b). 

The transformation matrix for rigid body effects is  
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   
























571

521

531

581









RA . 

The mass matrix is  

     mmmmm 2diag . 

The mass matrix corresponding to the rigid-body freedoms is 

         













 2

5

26
0

05


mAmAm R

T
RR , 

where m5  is the total mass and 2

5

26
m  is the mass moment of inertia about the 

center of mass. 

Its inverse is  

    










2

1

2610

02515

m
mR . 

The matrix product 

        


























151616

81242

18710

641018

26

11
mAmA

T
RRR  

and the release matrix 

           






























111616

81442

181910

64108

26

11
mAmAI

T
RRR . 

Now, consider the structure “supported” as in Fig. 7.13, c. The flexibility 

influence coefficients are 

  
IE

3

4411
3

2 
  , 

IE

3

4114
6

1 
  . 

The singular flexibility matrix, with rows and columns of zeros 

corresponding to supports, is  
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   





















4001

0000

0000

1004

6

3

IE


 . 

The dynamical matrix 

    





















4001

0000

0000

1004

 m , 

where 
IE6

3
 . 

For the unsupported system 

        
























500035

340046

140041

320038

26




m
mD . 

The eigenvalue problem  

          0 uDI , 

where 21   , has non-zero eigenvalues m 31   and m  26102 . The 

eigenvectors, scaled with the first component equal to 1, are 

  1u  4543431  T ,    2u  878118231  T  

The non-zero natural frequencies are  

  
31 2
m

IE
 , 

32 615
m

IE
. . 

7.5.2  Stiffness method 

In an analysis using the stiffness method, one would not obtain the 

dynamical matrix by using a directly assembled flexibility matrix and the problem 

must be re-formulated. 

We start with the equation of motion (7.244) 
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       0 xkxm     (7.256) 

and express the displacement vector as in (7.241) 

         EERR qAqAx  ,   (7.257) 

separating the rigid body effects, and the structural deformation effects. 

In (7.256) the nn  stiffness matrix  k  is singular. Substituting (7.257) 

into (7.256) we obtain 

                 0 EERREERR qAkqAkqAmqAm    (7.258) 

where, from (7.242, a), the third term is zero. 

Premultiplying (7.258) by  T
EA  and separately by  T

RA  we get 

                   0 EE
T

EEE
T

ERR
T

E qAkAqAmAqAmA   (7.259) 

and 

                   0 EE
T

REE
T

RRR
T

R qAkAqAmAqAmA  .(7.260) 

The third term in (7.260) is zero, according to (7.243), and the coefficient 

of the first term is  Rm , from (7.250), so that 

             0
1




EE
T

RRR qAmAmq  .  (7.261) 

Substituting (7.261) into (7.259) and putting    qq 2 , we get 

 
             

               .qAkAqAmA

qAmAmAmA

EE
T

EEE
T

E

EE
T

RRR
T

E

02

12









 (7.262) 

In the last term, the non-singular matrix 

         E
T

ER AkAk     (7.263) 

is called the reduced stiffness matrix. 

We can now reformulate the eigenvalue problem in terms of  Eq , i.e. 

 
               

         0

1

1

11

2









EE
T

ER

EE
T

RRR
T

ERE

qAmAk

qAmAmAmAkq
  

or 

                0
1




EE
T

ERE qAmAkq , (7.264) 
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where    is the release matrix (7.252). 

The eigenvalue problem 

                 0
1




EE
T

ER qAmAkI , (7.265) 

will give the RE nnn   non-zero eigenvalues and the corresponding 

eigenvectors. 

However, we need  x . Returning to (7.257) 

         EERR qAqAx   .   (7.266) 

Substituting for  Rq  from (7.261) and putting    xx 2 , gives 

               EEEE
T

RRR qAqAmAmAx 2122  


 

or 

                EE
T

RRR qAmAmAIx
1

  

and using (7.252) 

        EE qAx  ,    (7.267) 

where  Eq  is obtained from (7.265). 

If we return to (7.264) and premultiply by    EA  we obtain 

                     0
1




EE
T

EREEE qAmAkAqA  

or 

                 0
1




xmAkAx
T

ERE , 

and finally 

              0 xmI  , 

where 

                      111 
 kAAkAAAkA

T
EE

T
EE

T
ERE , 

which is the same as (7.251). 

Example 7.5 

Solve the problem from Example 7.4 using the stiffness method. 
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Solution. The rigid-body modes are defined by 1Rq  and 2Rq  (Fig. 7.13, 

b) and the elastic displacements for the structure “supported” as in Fig. 7.13, c are 

11 xqE   and 42 xqE  . 

It may be shown that the stiffness matrix is 

   





























818122

18484212

12424818

212188

5 3

IE
k . 

The transformation matrix for structural deformation effects is 

   





















10

00

00

01

EA  

hence the reduced stiffness matrix is 

          













82

28

5 3

IE
AkAk E

T
ER . 

Its inverse is  

    











82

28

60

5 3
1

IE
kR


. 

Then the product 

            











5035

3538

26

1 m
AmAk E

T
ER , 

where 
IE6

3
  and the release matrix    is as in Example 7.5. 

The characteristic equation is  

     0
5035

3538
det 






















I , 

where 





m

26
 , or 

  0780882   , 



7. MODAL ANALYSIS  57 

with roots 781   and 102  . 

The eigenvectors are 

  
1Eq  781 T ,       

2Eq  541  T ,  

so that 

        11 EE qAu  25.175.075.01  T , 

        22 EE qAu  875.0375.1875.21  T , 

as before. 

7.6  Modal participation factors 

When one of the matrices  k  or  c  is nonsymmetrical, as for rotors in 

fluid film bearings, the system matrix      kcm   2  has both right and left 

eigenvectors. Left eigenvectors are solutions of the adjoint eigenvalue problem. 

The physical interpretation of their components is one of modal participation 

factors. 

 In the eigenproblem (7.72) 

          02  rrr kcm  . n,...,r 21  (7.268) 

the right eigenvectors  r  define the mode shapes. 

 The adjoint eigenvalue problem admits the same eigenvalues, and adjoint 

eigenvectors  r  which satisfy the equations 

          02  r
TT

r
T

r kcm  . n,...,r 21  (7.269) 

 Because equation (7.269) can be written in the form 

           02  kcm rrr
 .  (7.270) 

where    Trr
  , the adjoint eigenvectors are known as left eigenvectors. 

 It can be shown that, for nonsymmetric matrices, equation (7.107) becomes 

   
   

 
 f̂

a
x~

n

r
rr

rr





2

1
i 

 
,   (7.271) 
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where 

      rrr YAa  , 
    

    rr

rr
r

YA

YB




 . (7.272) 

 The vectors of modal participation factors are defined as 

       r
r

r a
L 

1
 . n,...,r 21 .  (7.273) 

 Equation (7.271) has the form 

       f̂Hx~ i .    (7.274) 

 Denoting 

       






 n221   ,  (7.275) 

    

 

 

  





















n2

2

1









 ,     (7.276) 

the frequency response function (FRF) matrix can be written 

     iH i  a +  b  1   ,   (7.277) 

or 

       
   
















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r
r

rr

r

L
LH

2

1
ii

1
i






 .  (7.278) 

 In (7.278) the matrix of modal participation factors is  

  L   1
a   .    (7.279) 

 The j-th row of the FRF matrix is 

   j
H

 






n

r
r

rrj L
2

1
i 


.   (7.280) 

 The th- - column of the FRF matrix 
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  
 







n

r
r

rr
H

2

1
i 

 



.    (7.281) 

 The elements of the left eigenvectors express the participation of the mode 

shapes to  H , for input at the different coordinates. The components of the scaled 

matrix  L  can therefore be called modal participation factors. 

 When all system matrices are symmetric, as considered so far in this text, 

the vectors of the modal participation factors are proportional to the corresponding 

modal vector transposed 

      Tr
r

r a
L 

1
 . n,...,r 21   (7.282) 
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8. 
EIGENVALUE SOLVERS 

This chapter is about eigenvalues and eigenvectors of matrices 

encountered in undamped structural systems. Computational algorithms for both 

dense, small or modest order, and sparse large matrices are shortly described. The 

aim of the presentation is to provide the analytical and computational background 

to select the algorithms most adequate to the solution of a specific problem. 

Excellent software is available nowadays on the Internet. Full descriptions can be 

found in the books quoted in the text. 

8.1  Structural dynamics eigenproblem 

Dynamic analyses of conservative non-gyroscopic structural systems lead 

to the generalized symmetric eigenproblem 

       xmxk  ,    (8.1) 

where the stiffness and the mass matrices  k  and  m  are real and symmetric,   

are real eigenvalues and  x  are real eigenvectors. 

An obvious approach is to transform (8.1) to a standard eigenproblem 

       xxA  ,    (8.2) 

where  A  is an unsymmetric matrix. 

This can be made by inverting either  k  or  m , or to work with more 

complicated transformations, such as the Cayley Transform 

         mkmk  
1

 [8.1]. 

If  m  is non-singular, equation (8.1) transforms to 

        xxkm 
1

,    (8.3) 
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having the same eigenvalues. 

If  k  is non-singular, equation (8.1) yields 

        xxmk


11



.   (8.4) 

The inverse matrix has inverse eigenvalues. 

The forms (8.3) and (8.4) are used only for small system matrices. These 

approaches share the disadvantage that matrices  k  and  m  are not treated in the 

same way. This leads to problems if  k  is singular or ill-conditioned. 

8.2. Transformation to standard form 

Two procedures can be used to transform the generalized eigenproblem 

(8.1) to the standard eigenproblem (8.2): a) the Cholesky factorization of  m , 

which leads to a symmetric matrix having the same eigenvalues, and b) a shift-and-

invert spectral transformation, which yields an unsymmetrical matrix having the 

same eigenvectors as (8.1). 

8.2.1  Cholesky factorization of the mass matrix 

When  m  is positive-definite, it can be factored into 

       TLLm  ,    (8.5) 

where  L  is lower triangular. It follows that 

        xLLxk
T

 ,          xLxkL
T

1 , 

                 xLxLLkL
TTT


1 , (8.6) 

hence 

      yyB  ,    (8.7) 

where  

           T
LkLB

 1    (8.8) 

is a symmetric matrix with the same eigenvalues as those of the generalized 

problem and with eigenvectors  

        xLy
T

 .    (8.9) 
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If  m  is positive-semidefinite, its Cholesky factors are singular and this 

transformation cannot be performed. 

8.2.2  Shift-and-invert spectral transformation 

When a shift of the origin   is performed in (8.1) then 

             xmxmk   , 

which can be written 

           xxmmk






 11

,  (8.10) 

or 

       xxA  ,    (8.11) 

where  

           mmkA
1

   ,   (8.12) 

and 

  






1

.     (8.13) 

The matrix  A  is not symmetric but has the same eigenvectors as the 

original problem. The spectrum of  A  is related to the original spectrum through 

(8.13). The eigenvalue of (8.1) that is closest to   corresponds to the eigenvalue of 

largest magnitude of  A , as shown in Fig. 8.1. 

 

Fig. 8.1 



64                                                                                           MECHANICAL VIBRATIONS 

The matrix       mmk
1

  is M-symmetric, i.e.    Am  is 

symmetric. The spectral transformation leaves the eigenvectors unchanged. The 

eigenvalues of (8.1) close to the shift become the largest absolute of (8.9). In 

addition, they are relatively well separated, which improves the speed of 

convergence of iterative methods. The cost of the improved convergence rate is the 

necessity to solve a linear system of equations involving    mk  . Denoting 

     mkk   , in order to compute the matrix-vector product 

           xmkxAy
1

  , one simply solves      xmyk   by 

inverse iteration, using the LU factorization of  k :  

           xm\L\Uy  . 

8.3. Determinant search method 

Computation of the eigenvalues   via the explicit construction of the 

characteristic equation 

         0det  IAp     (8.14) 

is, except for very special cases, not an option since the coefficients of the 

characteristic equation cannot be computed from determinant evaluations 

(“determinant search”) in a numerically stable way. 

Even if the characteristic equation could be determined accurately, the 

computation of its roots, in finite precision, may be highly unstable since small 

perturbations in the coefficients may lead to large perturbations of the roots. The 

numerical computation of the associated eigenvectors is even more delicate, in 

particular when the eigenvectors of  A  make small angles with each other. This 

was already recognized by Jacobi who, in 1846, computed the eigenvalues of 

symmetric matrices by rotating the matrix to a strongly diagonally dominant one 

[8.2]. 

The so-called “determinant search method” is based on an iteration with 

the characteristic polynomial  p  used in conjunction with the Sturm sequence 

and vector inverse iteration. The basic strategy is to calculate first an 

approximation to the unknown eigenvalue using a polynomial iteration scheme, 

and switch to inverse iteration only when a shift close to the required eigenvalue 

has been obtained [8.3]. 

Consider the iteration for the eigenpair   11 x, . Let 1k  and k  be 

two approximations to 1 , where 11   kk . 



8. EIGENVALUE SOLVERS  65 

The first aim is to obtain as economically as possible a shift near 1 . 

This is accomplished by using an accelerated secant iteration in which the next 

shift 1k  is calculated using 

 
 

   
 1

1
1 


 


 kk

kk

k
kk

pp

p





 , 

where   is a constant. Usually 2 , because the iteration with 2  can only 

jump over one root, which would be detected by a sign change in p. 

 

There are essentially two approaches to calculate eigenvalues, 

transformation and iterative methods. 

8.4. Matrix transformation methods 

The standard approach for the numerical solution of the eigenproblem is 

to reduce the matrix involved to some simpler form, which yields the eigenvalues 

and eigenvectors directly, for instance, for symmetric matrices, the diagonal form. 

The idea is to make the transformation with orthogonal operators as often as 

possible, in order to reduce the effect of perturbations [8.4]. 

Unsymmetric matrices do not in general have an orthonormal set of 

eigenvectors but they can be transformed to Schur form. Any matrix can be 

transformed to upper triangular form  T  by a unitary similarity transformation 

         TUAU H  .   (8.15) 

The diagonal elements of  T  are the eigenvalues of  A . The columns 

of  U  are Schur vectors. If  A  were symmetric,  T  would be diagonal. 

Matrices are usually first transformed to upper Hessenberg form or 

tridiagonal form, then the subdiagonal elements are zeroed by iteration methods. 

Transformation methods can be used when it is possible to store the 

whole matrix in one array in the computer and when all eigenvalues are required. 

MATLAB [8.5] and LAPACK [8.6] give transformation methods as their primary 

choice and can handle dense matrices of not too large order. 

The recognition that matrices could be reduced, by orthogonal 

transformations, in a finite number of steps, to some special reduced form that 

lends itself more efficiently to further computations was a very important step in 

the solution of eigenproblems [8.1]. In particular, a symmetric matrix can be 

reduced to tridiagonal form by Jacobi-rotations, provided that these rotations are 
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restricted to annihilate entries of  A  outside its tridiagonal part. This was 

suggested by Givens in 1954. 

In 1958 Householder discovered that complete columns of  A  could be 

reduced to zero, outside the tridiagonal part, by the more efficient Householder 

reflections (section 8.4.2). His method has become the method of choice for the 

reduction of matrices to tridiagonal form on serial computers. 

Thus for eigenproblems, a symmetric matrix can be reduced by a finite 

number of orthogonal similarity transformations to tridiagonal form, and 

unsymmetric matrices can be transformed to upper Hessenberg form (a matrix 

which is zero below the subdiagonal). 

By 1960, the eigenvalue problem for a symmetric tridiagonal matrix was 

solved in ANSYS [8.7] by using the Sturm sequence property for successive 

subdeterminants. The corresponding eigenvectors were computed by inverse 

iteration. A complete and thorough analysis for the Givens and Householder 

reductions and for the use of Sturm sequences, is given in Wilkinson’s book [8.8], 

which was the bible of numerical linear algebra for a long time. 

A superior technique for determining the complete set of eigenvalues and 

eigenvectors is the QR method. It became the method of choice for symmetric 

problems after the publication of Parlett’s book [8.9]. The key idea came from 

Rutishauser with his construction of a related algorithm, called LR, in 1958. After 

1980, the Householder-QR-inverse iteration sequence of methods has been used for 

dense matrices of order up to a few thousands [8.1]. 

8.4.1  The eigenvalue decomposition 

Let n,...,,  21  be the eigenvalues of a matrix  A , let 

     nx...,,x,x 21  be a set of corresponding eigenvectors, let  Λ  denote the 

nn  diagonal matrix with the S  on the diagonal, and let  X  denote the nn  

matrix whose  j-th column is  jx . Then 

       XXA   Λ     (8.16) 

and, if the eigenvectors are linearly independent,   1X exists, and 

     XA    Λ   1
X .   (8.17) 

This is known as the eigenvalue decomposition of the matrix  A . 

With non-singular  X , equation (8.16) becomes 
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         XAX 1  Λ ,    (8.18) 

known as a similarity transformation. 

So  A  is transformed to diagonal form by a similarity transformation. 

Usually this cannot be made in a single step. Transforming techniques for 

symmetric matrices make a sequence of similarity transformations until a diagonal 

form (8.18) is reached, showing all the eigenvalues and eigenvectors. 

8.4.2 Householder reflections 

Formally, a Householder reflection is a matrix of the form 

         h/uuIH
T

 ,   (8.19) 

where  u  is any nonzero vector and     2/uuh T . The resulting matrix is 

both symmetric,    HH T  , and orthogonal,      IHH T  . Hence 

     HHH T 1 .  

 The matrix  H  is called a reflection matrix, because the vector 

  wH  is the reflection of the vector  w  in the plane to which  u  is 

orthogonal. 

The real symmetric matrix  B  in equation (8.7) is reduced to a 

symmetric tridiagonal matrix  A  using orthogonal similarity transformations: 

        zHy  ,   (8.20) 

           zHzHB  , 

           zzHBH 1 , 

       zzA  ,   (8.21) 

where 

               HBHHBHA  1 . (8.22) 

The similarity transformation      HBH  eliminates the elements in 

the j-th row of  B  to the left of the subdiagonal and the symmetrical elements in 

the j-th column. 

This was the basis of the subroutine TRED1 in EISPACK [8.10]. 
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8.4.3  Sturm sequence and bisection 

For the eigenproblem (8.21), the characteristic equation in determinantal 

form is 

  0

00

0

0

00

4443

343332

232221

1211


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
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





aa

aaa

aaa

aa

.    (8.23) 

Let 1det0   and consider the determinants marked off by dotted lines 

  111det a , 

   0
2
211222 detdetdet aa   , 

   1
2
322333 detdetdet aa   , 

   2
2
433444 detdetdet aa   , 

and 

   2
2

11 detdetdet   rr,rrrrr aa  .   (8.24) 

For a given value of   (say b ) the sequence n,...,, detdetdet 10  may 

be evaluated easily by the recurrence relationship (8.24). This is known as a Sturm 

sequence and has the property that the number of distinct real roots of ndet  with an 

algebraic value less than b is equal to the number of changes of sign in it. 

If, for b , we have 

  0det  1det  2det  3det  4det  

                                                    

then below b there are two eigenfrequencies. 

When one of the determinants has a value of zero, it is given the sign of 

the previous determinant in the sequence. 

For a tridiagonal symmetric matrix it is thus possible to determine the 

number of eigenvalues with an algebraic value less than LB and UB, respectively. 

Their difference is the number of eigenvalues in the interval (LB, UB). 
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Given the number, they may be located by a systematic search procedure. 

Each subinterval enclosing an eigenvalue in (LB, UB) is shrunk using a bisection 

process until the endpoints are close enough to be accepted as an eigenvalue. The 

result is an ordered set of eigenvalues within (LB, UB). The corresponding 

eigenvectors are determined using inverse iteration. 

Identical eigenvalues are perturbed slightly in an attempt to obtain 

independent eigenvectors. These perturbations are not recorded in the eigenvalue 

array [8.11]. 

8.4.4  Partial Schur decomposition 

 The problem of finding the eigenvectors of a matrix  A  can be reduced to 

computing the eigenvectors of a triangular matrix using a Schur decomposition. 

 Denoting         kk x,...,x,xX 21  and  kΘ  k,...,,  21diag , 

the individual relations      kkk xxA   can be combined in 

       kk XXA   kΘ .   (8.25) 

 For a selected set of k (e.g.: largest) eigenvalues of  A , there is a partial 

Schur decomposition [8.12] 

          kkk TUUA  ,   (8.26) 

where  kT  is upper triangular.  kU  is orthogonal and its columns are Schur 

vectors of  A . The diagonal elements of  kT  are eigenvalues of  A . By 

appropriate choice of  kU  they may be made to appear in any specified order. The 

Schur matrix  kT  has an eigendecomposition 

        kkk SST   kΘ ,   (8.27) 

where  kS  is the upper triangular matrix of the eigenvectors of  kT , and  kΘ  is 

the diagonal matrix of the eigenvalues from equation (8.25). It turns out that the 

eigenvector matrix  kX  is given by 

        kkk SUX  ,    (8.28) 

so that the eigenvectors of  A  are linear combinations of the orthogonal Schur 

vectors corresponding to the selected eigenvalues 

      



k

j
jjii usx

1

.    (8.29) 
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 Thus, the eigenvectors of the original matrix  A  can be found by 

computing the eigenvectors of the Schur form  kT  and transforming them back 

using the orthogonal transformation  kU  as shown in Fig. 8.2. 

 

 

Fig. 8.2 (from [8.13]) 

 If the Schur vectors are M-orthonormal, then        kk
T

k IUmU  . 

Because matrices  k  and  m  are symmetric, the product    Am  is symmetric. 

Then          kk
T

k TUAmU   is a Schur form of    Am ,    k
T

k TT  , so 

that  kT  itself is symmetric, hence is diagonal. Its elements are eigenvalues of 

 A  and the Schur vectors are eigenvectors of  A      kk IS  . 

 For large order systems, it is better to solve the generalized Hermitian 

eigenproblem (8.1) without transformation to a standard eigenproblem. For 

stability reasons, it is more appropriate to work with orthogonal transformations 

and to compute Schur vectors for the pencil    mk   rather than eigenvectors.  

 A partial generalized Schur form of dimension k for the matrix pair 

    m,k  is the decomposition 

        K
kkk TQZk  ,        M

kkk TQZm  , (8.30) 
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where  kZ  and  kQ  are orthonormal kn  matrices, and  K
kT  and  M

kT  are 

upper triangular kk   matrices. The columns of  kZ  (and  kQ ) are referred to 

as generalized Schur vectors. Eigenvalues are computed from the ratio of the 

diagonals of the triangular forms [8.1]. 

8.5. Iteration methods 

All general purpose eigenvalue algorithms are necessarily iterative. This 

is a consequence of Abel’s proof that there is no algebraic formula for the roots of 

a general polynomial of degree greater than four. Hence, there is no method of 

computing the eigenvalues of an n-th order matrix in a finite number of 

computations. 

An algorithm for a matrix with a general structure (that is, neither 

diagonal nor triangular or alike) is necessarily iterative. The problem is to identify 

iterative algorithms which have a fast rate of convergence and lead to accurate 

results. 

In an iterative method, a sequence of vectors is computed 

   1x ,   2x , . . . ,   kx           jx , 

hopefully converging toward an eigenvector  jx .  

8.5.1  Single vector iterations 

 Single vector iteration techniques include the power method, the shifted 

power method, the inverse iteration and the Rayleigh quotient iteration. 

The power method is based on the observation [8.1] that if we multiply a 

given vector  v  by the matrix  A , then each eigenvector component in  v  is 

multiplied by the corresponding eigenvalue of  A . In other words, if a given 

vector is repeatedly applied to a matrix, and is properly normalized, then ultimately 

it will lie in the direction of the eigenvector associated with the eigenvalue which is 

largest in absolute value. In the iteration process, the component of the starting 

vector in the direction of the eigenvector with largest eigenvalue is magnified 

relative to the other components. Householder called this Simple Iteration [8.2] and 

attributed the first treatment of it to Müntz (1913). 

An effective variant is the inverse power method proposed by Wielandt 

(1944) in which one works with the matrix      1
 IA  . Wielandt also 
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proposed continuing the process after the largest eigenvalue has converged, by 

working with the deflated matrix      TxxA 111 , for which 1 , 1x  is the 

computed eigenpair (with     111 xx
T

), associated with the largest eigenvalue in 

magnitude. 

Another possibility is working with properly updated shifts in the inverse 

process and, in particular, if one takes the Rayleigh quotient with the most recent 

vector as a shift, then one obtains the Rayleigh quotient iteration. 

The power method and the inverse power method, in their pure form, are 

no longer competitive methods even for the computation of a few eigenpairs. They 

are still of interest since they are explicitly or implicitly part of most modern 

methods such as the QR method, and the methods of Lanczos and Arnoldi. 

8.5.1.1  The power method 

Assume  A  has real eigenvalues and a complete set of eigenvectors 

       rrr xxA  ,  n,...,,r 21 .  (8.31) 

We further assume that the largest eigenvalue in modulus is single and 

that 

  n.....   21 . 

Now suppose we are given a vector  1v  which can be expressed in 

terms of the eigenvectors (expansion theorem) as 

         



n

r
rrnn xx....xx

1
22111 v . (8.32) 

We assume that 01  . This means that  1v  has a nonzero component 

in the direction of the largest eigenvector. 

If the arbitrary vector  1v  is premultiplied by  A , we obtain 

           



n

r
r

r
r

n

r
rr xxAA

1 1
1

1
12 


vv . (8.33) 

In contrast to  1v , in which the eigenvectors  rx  are multiplied by the 

constants r , the eigenvectors  rx  in the vector  2v  are multiplied by 
1




r
r .  
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Because 1
1




 r
 and the ratios decrease with increasing r, the 

participation of the higher modes in  2v  tends to decrease, as opposed to their 

participation in  1v . If  1v  is regarded as a trial vector toward obtaining the 

eigenvector  1x , then  2v  must be regarded as an improved trial vector. 

The procedure can be repeated 

               

















n

r
r

r
r

n

r
r

r
r xxAAA

1

2

1
1

1 1
1

2

1
2

1
3

11












vvv . 

It comes out that  3v  is a better trial vector for  1x  than  2v . 

By premultiplying the newly obtained vectors repeatedly by  A  we are 

establishing an iteration procedure converging to the first eigenvalue and 

eigenvector. 

In general, we have 

          






 














n

r
r

p

r
r

p

ppp xA...A
1

1

1
11

1

2
1

1
1

11







vvv    (8.34) 

so, for a sufficiently large integer p, the first term in the series becomes the 

dominant one 

         111
1

1
11

1
lim

1
lim xA

p

pp
p

p








vv . (8.35) 

In practice only a finite number of iterations will suffice to reach a 

desired level of accuracy. The rate of convergence depends on the ratio of the 

second largest eigenvalue to the largest eigenvalue. 

When convergence is achieved, the vectors   1pv  and  pv  satisfy 

equation (8.31) because they can be both regarded as  1x . Denoting 

     1
1 vw 


p

p A , the Rayleigh quotient of these vectors is equal to the 

eigenvalue 

  
     

   
1lim 


p

T
p

p
T
p

p

A

ww

ww
.   (8.36) 
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The question remains as how to obtain the higher modes. 

8.5.1.2  Wielandt deflation 

If  1x  is mass-normalized 

        111 xmx
T

,    (8.37) 

then the matrix 

           mxxAA
T
1112     (8.38) 

has the same eigenvalues as  A  except that 1  is replaced by zero. 

The vector 

       



n

r
rrr xA

2
12 v  

is free from  1x . In (8.38)  2A  is called the deflated matrix corresponding to 

the second eigenvalue. 

The power method applied to the matrix 

           mxxAA
T
22223    (8.39) 

converges to the eigenpair 3 ,  3x . 

In order to prevent over- or underflow, the iteration vectors are scaled. 

8.5.1.3  Inverse iteration 

The inverse power method can be used to determine an eigenvector 

corresponding to an eigenvalue that has already been determined with reasonable 

accuracy by some method. 

Let   be an approximation to the eigenvalue   of  A  so that 

   AI   is nearly singular. The scaled inverse power method for an initial 

vector  0x  defines the sequence of vectors  kv  and  kx  recursively as 

follows 

         kk xAI  1v , 

        111   kkkx vv .  ....,,,k 210  
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At each stage of this iterative process, a linear system is solved with the 

same coefficient matrix but a different right-hand side. Thus first the LU-

decomposition of    AI   is formed, and at successive steps the system is 

solved using only a forward and back substitution. For a good approximation   of 

 , the method may be expected to converge quite rapidly. 

Example 8.1 

Calculate the first natural frequency and mode shape of torsional vibration 

for the three-disk system of Fig. 8.3, where JJ 31  , JJ 22  , JJ 3 , 

KKKK  321 . 

 

Fig. 8.3 

Solution. The equations of motion are 

 

  .KKKJ

,KKKKJ

,KKJ

0

0

0

3322233

322211122

211111



















 

In matrix form 















































































0
0
0

0

0

00

00

00

3

2

1

322

2211

11

3

2

1

3

2

1











KKK

KKKK

KK

J

J

J







. 

For the given disk inertia and shaft stiffness parameters, the mass and 

stiffness matrices are 

 













100
020
003

Jm ,  






















210

121

011

Kk . 

The flexibility matrix is 
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     















111
122
12311

K
k  . 

The working matrix for iteration is 

      






































123
146
149

100
020
003

111
122
123

K

J

K

J
mb  . 

The starting vector is taken proportional to the first column of matrix  b  

   















31

32
1

1v . 

The first iteration 

             21 12
3890
7500
1

12
6674
9

12

3330
6670
1

123
146
149

vv
K

J

.

.
K

J

.K

J

.

.
K

J
b 


















































 . 

 The second iteration 

    32 38912
3950
7580
1

38912
8894
3899
38912

3890
7500
1

123
146
149

vv
K

J
.

.

.
K

J
.

.

.
.

K

J

.

.
K

J
b 


















































  

  The third iteration 

    33 42712
3950
7580
1

42712
9114
4279
42712

3950
7580
1

123
146
149

vv
K

J
.

.

.
K

J
.

.

.
.

K

J

.

.
K

J
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


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




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

































  

The first mode of vibration is defined by 

 













3950
7580
1

1
.
.x ,  

J

K
.

J

K

,
08050

42712

12
1  ,  

J

K
.283601  . 

8.5.2  The QR method 

The QR algorithm is based on the repeated use of the QR factorization, 

which factors any matrix into the product of a matrix  Q  with orthonormal 

columns and a matrix  R  that is nonzero only in its upper, or right, triangle. 
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The simplest variant, known as the single-shift algorithm, is implemented 

in MATLAB as the qr function [8.5]. 

First, the QR factorization makes the matrix triangular 

         RQIA  ,   (8.40) 

where  n,nA  is the shift and  I  is the identity matrix. 

Then, the reverse order multiplication, RQ, restores the eigenvalues 

because 

                     QAQIQIAQIQR
TT

  , (8.41) 

so the new  A  is orthogonally similar to the original  A . Each iteration 

effectively transfers some information from the lower to the upper triangle while 

preserving the eigenvalues. As iterations are repeated, the matrix often approaches 

an upper triangular matrix with the eigenvalues conveniently displayed on the 

diagonal. 

The QR algorithm is always preceded by a reduction to Hessenberg form, 

in which all the elements below the subdiagonal are zero. This reduced form is 

preserved by the iteration and the factorizations can be done much more quickly. 

The QR algorithm introduces zeros in the first subdiagonal. 

The simplest variant involves real, symmetric matrices. The reduced form 

in this case is tridiagonal. 

The basic QR method is described as follows [8.15]: 

Denote the nn  matrix  A  by  0A . The QR factorization of  0A  

is 

       000 RQA  . 

Define 

       001 QRA  . 

Perform the QR-factorization of  1A  

       111 RQA  . 

Define 

       112 QRA  . 

In general, obtain the QR-factorization of  1kA  
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       111   kkk RQA ,   (8.42) 

then define 

       11  kkk QRA ,  1k .  (8.43) 

To form  kA  we take the product of the QR-factors from the previous 

step in reverse order. This simple process yields a sequence of matrices 

 0A ,  1A , …. . It can be shown that the  kA  are orthogonally similar to 

   AA 0 : 

                 













  1100110 k

T

kk QQQAQQQA   (8.44) 

and that  k
k

A


lim  is an upper triangular matrix. Its diagonal elements are the 

eigenvalues. 

8.5.3  Simultaneous iteration 

Assume that we start with a set of independent vectors 

           kk u,...,u,uU 21
0  ,  (8.45) 

and that we carry out the power method with   0
kU  , which leads to the 

computation of 

         1 i
k

i
k UAU      (8.46) 

per iteration. 

If we do this in a straightforward manner, then this will lead to 

unsatisfactory results because each of the columns of   0
kU  is effectively used as a 

starting vector for a single vector power method, and all these single vector 

processes will tend to converge towards the dominant vector. This will make the 

columns of   i
kU  highly dependent in the course of the iteration. 

It is therefore a good idea to try to maintain better numerical 

independence between these columns and the most common technique for this is to 

make them orthonormal after each multiplication with  A . This leads to the 

orthogonal iteration method, as represented in the following template [8.1]: 
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 start with orthonormal   1
kU  

 for i = 1, …, until convergence 

        i
kk UAV   , 

  orthonormalize the columns of  kV  

        kkk RQV   , 

      k
i

k QU 1  , 

 end 

 

The columns of   i
kU  converge to a basis of an invariant subspace of 

dimension k, under the assumption that the largest k eigenvalues (counted 

according to multiplicity) are separated from the remainder of the spectrum. This 

can be easily seen from the same arguments as for the power method. The 

eigenvalues appear along the diagonal of  R . 

8.5.4  The QZ method 

A stable method for the solution of the generalized problem (8.1) is the 

QZ method proposed by Moler and Stewart (1973) and implemented in the eig.m 

subroutine in MATLAB. Though more general, we are interested in its application 

in the case when  k  and  m  are symmetric with the latter positive definite. 

The symmetric-definite problem can be solved using a method that 

utilizes both the Cholesky factorization      TLLm   and the symmetric QR 

algorithm applied to         T
LkLB

 1 . This computes the Schur 

decomposition        n
T ,...,QBQ  1diag  to obtain a nonsingular 

     QLX 1  such that        n
T IXmX   and 

       n
T ,...,XkX  1diag , where n,...,1  are the eigenvalues. 

The QZ method for real matrices is based on the generalized real Schur 

decomposition. If  k  and  m  are real nn  matrices, then there exist orthogonal 

matrices  Q  and  Z  such that 

         KT
TZkQ    and        MT

TZmQ   (8.47) 

are upper triangular. 
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The computation of this decomposition is made in two steps. The first 

step is to reduce  k  to upper Hessenberg form and  m  to upper triangular form 

via orthogonal transformations. Then, by applying a sequence of QZ steps to the 

Hessenberg-triangular pencil    mk  , it is possible to reduce  k  to (quasi-) 

triangular form. The ratio of diagonal elements of  KT  and  MT  define the 

eigenvalues  . Eigenvectors are computed by a back substitution algorithm. 

8.6.  Subspace iteration methods 

Subspace iteration was originally introduced by Bauer (1957), who called 

the method Treppeniteration (staircase iteration). In the modern iterative subspace 

methods, like Arnoldi’s method for unsymmetric matrices, Lanczos’ method for 

symmetric matrices, and Davidson’s method, the given large problem is reduced to 

a much smaller one. This smaller problem can then be solved by the, by now, 

standard techniques for dense matrices. 

8.6.1  The Rayleigh-Ritz approximation 

 The Rayleigh-Ritz method is used for extracting an approximate low-

dimensional eigenspace from a larger subspace. It is possible to construct k 

approximate eigenvectors of  A ,         kk x,...,x,xX 21 , as linear 

combinations of some trial vectors         mm ,...,,V vvv 21 : 

       kmk YVX  ,    



m

j
jjii yx

1

v ,  (8.48) 

where         kk y,...,y,yY 21 ,  and nk  . In reference [8.16], the 

number of trial vectors m=2k. 

 Any pair   ii ,x   that satisfies the orthogonality condition for residuals 

            0 iii
T

m xxAV     (8.49) 

is called a Ritz pair. For k eigenpairs, equation (8.49) can be written 

   T
mV (      kk XXA   kΘ )  0   (8.50) 
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where  kΘ  k,...,,  21diag . Substituting (8.48) in equation (8.50), one obtains 

the reduced eigensystem 

        kkm YYH   kΘ ,   (8.51) 

where 

          m
T

mm VAVH     (8.52) 

has the form of a Rayleigh quotient matrix, and      mm
T

m IVV  . 

 

Fig 8.4 (from [8.13]) 

 The columns of  kX  are called the Ritz vectors, and the elements of 

 kΘ  are the Ritz values. The columns of  kY  are referred to as primitive Ritz 

vectors. 

 The Rayleigh-Ritz approximation (8.48) allows constructing eigenpairs 

  ii ,x   of the large matrix  A , from the eigenpairs   ii ,y   of the small matrix 

 mH . If m<<n, the eigensystem of  mH  can be computed by conventional 

(dense) means. An appropriate form of  mH  for the QR iteration is the 

Hessenberg form. This can be obtained using the Arnoldi factorization [8.17], i.e. 

selecting the columns of  mV  as orthonormal Arnoldi vectors.  

 Figure 8.4 shows the relationships between the quantities involved in 

computation. 
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 Using M-orthogonal Arnoldi vectors,        mm
T

m IVmV  , the matrix 

 mH  is symmetric (tridiagonal) and the Arnoldi process reduces to the more 

simple Lanczos process for the symmetric problem. 

8.6.2  Krylov subspaces 

 Given  1v , in the power method we compute 

     1vA ,      1vAA , …… ,    1
1 vp

A . 

       At each step, the power method considers only the single vector    1
1 vp

A  

which amounts to throwing away the information contained in the previously 

generated vectors. However, it turns out that this information is valuable.  

Generally, the sequence 

   1v ,    1vA ,    1
2 vA ,    1

3 vA , …. 

is a Krylov sequence based on  A  and  1v . 

A Krylov subspace is defined by 

              1
1

111 span; vvvv 


p
p A,...A,AK . (8.53) 

Krylov subspaces play a central role in iterative methods for eigenvalue 

computations. The methods of Lanczos and Arnoldi exploit the whole Krylov 

subspace. 

8.6.3  The Arnoldi method 

 Arnoldi’s method can be thought of as an effective way of constructing an 

orthogonal set of vectors, referred to as Arnoldi vectors, for use in the Rayleigh-

Ritz approximation procedure to reduce the dimension of the equations of motion. 

 The original algorithm [8.18] was designed to reduce a dense non-

Hermitian matrix to upper Hessenberg form by an orthogonal projection onto the 

subspace spanned by the Arnoldi vectors. The symmetric version is the Lanczos 

method [8.19] which reduces a Hermitian matrix to tridiagonal form. 

 The value of Arnoldi's method as a technique for approximating a few 

eigenvalues and their matching eigenvectors was recognized later [8.20]. More 

than two decades of fruitful research efforts, to solve the various problems raised 

by its numerical implementation, resulted in ARPACK [8.21], a well-coded and 
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well documented software package, claiming to become the standard for large non-

Hermitian eigenproblems. ARPACK is written in Fortran 77 and is based on the 

Implicitly Restarted Arnoldi (IRA) iteration [8.17]. There is also a MATLAB 

implementation [8.16].  

 The basic idea behind the Arnoldi reduction is to use orthogonalized 

Krylov vectors as trial vectors  mV  in equation (8.48). 

 8.6.3.1  Arnoldi’s algorithm 

 The basic algorithm consists of the following five steps: 

 1 - build an orthogonal basis for the subspace spanned by the columns of 

the Krylov matrix 

                 1
1

1
2

11 vvvv 


m
m AAAK  ; 

 2 – form the matrix 

           mmV vvvv 321 ,   where        1
1 vv 


k

k A ; 

 3 - compute the Rayleigh matrix 

          m
T

mm VAVH  ; 

 4 - eigensolution 

      yyHm  ; 

 5 – compute Ritz vectors 

      yVx m . 

 As m increases, extremal well-separated eigenvalues of  A  are well 

approximated by a subset of the eigenvalues of  mH . 

 8.6.3.2  Generation of Arnoldi vectors 

 Arnoldi vectors   jv  represent orthogonal unit directions in an n-

dimensional basis subspace. 

 Initial vector 

 The unit vector  1v  is along  1v , determined solving 

           01 vv mmk  , 

where 
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     
2000 vvv  ,     501randn0 .,n v , 

then normalized to unit length  

      
2111 vvv  . 

 Second vector 

 Premultiplication by  A  yields the vector  

       12 vv A , 

rotated with respect to  1v .  

 The component of  2v  along  1v  is the projection      211 vvv T
. 

The component orthogonal to  1v  is 

            21122 vvvv T
I  , 

where  2v  has unit length, 1
22 v  and 2  is the amplitude. 

 Third vector 

 Premultiplication of  2v  by  A  yields  

       23 vv A , 

rotated out of the plane of  1v  and  2v . 

 The component of  3v  along  1v  is      311 vvv T
, the 

component along  2v  is      322 vvv T
 and the component orthogonal to 

both  1v  and  2v  is  

               3221133 vvvvvv TT
I  , 

where  3v  has unit length, 1
23 v  and 3  is the amplitude. 

 The   thm -1  vector 

 In general, premultiplication of  mv  by  A  yields  

       mm A vv 1 . 
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 The component of   1mv , orthogonal to all previous unit vectors in the 

sequence, is  

           111   m
T
mmmm VVI vv , 1

21 mv  

or 

         


 
m

j
jjmmmm hA

1
11 vvv ,  (8.54) 

where 

        m
T
jjm Ah vv .    (8.55) 

 The recurrence equations can be written in matrix form 

             Tmmmmmm HVVA ev 11    

where   
T
me  1,0...,,0   has m elements. 

 8.6.3.3  The Arnoldi factorization 

 In exact arithmetic, the matrix   nnA   can be reduced to upper 

Hessenberg form  nH  by a congruence transformation 

          HVAV n
T

n  , 

where         nn ,...,,V vvv 21  is orthogonal. 

 The Hessenberg decomposition of  A : 

          nnn HVVA  , 

can also be written in the form 

 

        

      





































nnn

n,n

m

nn,m

nn,m

n

n

h

h

hhhh

hhhhh

,...,,

,...,,A

















11

1

3

2122222

11111211

21

21

0

   

 

vvv

vvv

. (8.56) 

 In equation (8.56), the subdiagonals 
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  m,mm h 11     11  n,...,m ,      01 n .  (8.57) 

 After m steps, the Arnoldi method computes what is called a length m 

Arnoldi factorization of  A : 

 

        

        

0

   

 

1

3

2222

11211

121

21































m

mm

m

m

m

m

h

hh

hhh

,...,,

,...,,A












vvv

vvv

.  (8.58) 

 Denoting         mm ,...,,V vvv 21 , m<n, equation (8.58) can be 

written compactly as 

              Tmmmmm rHVVA e .  (8.59) 

 In equation (8.59), the residual 

       11  mmmr v     (8.60) 

forms the last column in the last term matrix (Fig. 8.5). Since  mr  is a multiple of 

  1mv , it must be orthogonal to all previous Arnoldi vectors  jv  ( j =1, ..., m), 

hence      0m
T

m rV . 

 

Fig. 8.5 

 Suppose that  mV  is known, i.e. m columns of  nV  have been 

determined. Write the m-th column of (8.56) in the form 
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             11  mmmmm hVA vv ,  (8.61) 

where   mh  mmm hh ,...,1
T . 

 Denoting the residual (8.61) 

              11  mmmmmm VAr vhv ,  (8.62) 

the Arnoldi algorithm forces      0m
T

m rV  via the choice of the elements of 

 mh : 

          m
T

mm AVh v ,   (8.63) 

and normalizes then  mr  to get 1m  and   1mv : 

   
21 mm r ,     (8.64) 

      
21 mmm r/rv .    (8.65) 

 Cancellation in equation (8.62) can cause the Arnoldi process to fail 

producing orthogonal vectors. The cure is reorthogonalization and accumulation of 

changes in  mh : 

             m
T

mmm rVhh  ,   (8.66) 

            m
T

mmmm rVVIr  .  (8.67) 

This is known as the DGKS correction [8.22]. 

 If   0mr , then 1m  is undefined and 

          mmm HVVA  .   (8.68) 

 The subspace spanned by the columns of  mV  is invariant with respect to 

 A , i.e. it is an eigenspace of  A , and one can determine its eigenelements 

[8.12]. 

 In order to compute the other eigenelements, the algorithm is restarted 

choosing   1mv  orthogonal to  mV . The eigenvalues of  mH  are a subset of 

those of  A . The initial vector     11 eVmv  is a linear combination of 

vectors spanning an invariant subspace of  A . 

 It is better to use M-orthogonal Arnoldi vectors:  

          mm
T

m IVmV  . 
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 Premultiplying equation (8.68) by    mV
T

m  one obtains, instead of 

equation (8.52),  

              mm
T

m HVmkmV 
1

,  (8.69) 

and  mr  is M-orthogonal to  mV . In this case, the Hessenberg matrix is 

symmetric (tridiagonal) and the Arnoldi process reduces to the more simple 

Lanczos process for the symmetric problem. 

 Using the M-Arnoldi process, equations (8.63) to (8.65) become 

        m
T

mm rmVh  ,               mm mrk v , (8.70) 

     11   mmm r v ,           21
1   m

T
mm rmr .  (8.71) 

Again, reorthogonalization is necessary. 

8.6.3.4  Eigenpair approximation 

 Once the matrix of Arnoldi vectors,  mV , and the Ritz matrix,  mH , are 

constructed, the focus is to extract information about the eigensystem of the matrix 

 A . 

 Equation (8.59) shows that, for a given m and  1v  

               011   m
T
mmmmmm RHVVA ev . (8.72) 

 In order to obtain equation (8.68) it seems that it is sufficient to make 

   0mR . Obviously, 0mR  when  01 m .  

 If 01 m , then    span mV  is an invariant subspace, and  mH  is the 

restriction of  A  to it. Nevertheless, in practical applications 01 m  never 

happens. However, some of the eigenvalues of  A  are often much more 

accurately approximated than indicated by the size of the subdiagonal element 

1m . 

 The strategy for obtaining        mmm HVVA   is to find an 

appropriate initial vector which forces  mr  to vanish. It makes  1v  be a linear 

combination of m eigenvectors of  A . If m is fixed, then the initial vector is 

updated while repeatedly doing m Arnoldi steps, until a subdiagonal element of the 

Hessenberg matrix is less than a prescribed tolerance. 
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 In exact arithmetic,  mR  has all its elements concentrated in the last 

column. If      iiim yyH  , then      imi yVx  . satisfies the relation 

           i
T
mmiii yexxA 1  .  (8.73) 

 The last term in equation (8.73), called the Ritz estimate of the eigenpair 

  ii ,y  , describes the goodness of the eigenpair approximation. As 1m  is 

multiplied by the last element of  iy , all eigenvalues of  mH , whose vectors 

have small last elements, have smaller errors than expected from 1m . 

 Computations performed in finite-precision arithmetic complicate the 

picture. In fact, all columns of  mR  contain round off, so its elements are not 

concentrated in the last column. 

 In [8.16], the Ritz estimates are first used to assess the convergence. When 

the Ritz estimates become too small, the convergence tolerance is computed using 

the 1-norm of the matrix of errors 

          
11

tol A/XXA kkk  .  (8.74) 

 The Arnoldi algorithm is used with repeated, carefully chosen restarts, to 

keep small the storage space, and a controlled iteration maximum.  

 

Fig. 8.6 (from [8.13]) 
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 Apart from the desired convergence tolerance, other quantities to be 

decided are: the starting vector, the number of desired eigenpairs, the dimension of 

the Arnoldi basis necessary to ensure the prescribed accuracy, the stagnation 

tolerance and the maximum number of Arnoldi iterations. 

 In [8.16], the starting vector is randomly generated, 

    501randn0 .,n v , then it is normalized to unit length 
200 }{}{ o/ vvv  . 

One power iteration is performed before starting the iterative process, using the 

initial vector 01 }{][}{ vv A  instead of  }{}{ 01 vv  . 

8.6.3.5  Implementation details 

 Krylov subspace methods encompass three main steps: a) matrix 

preparation, b) subspace generation, and c) eigenvalue approximation. If m<<n, the 

eigensystem of  mH  can be computed by conventional (dense) means. An 

appropriate form of  mH  for the QR iteration is the Hessenberg form. This can be 

obtained using the Arnoldi factorization [8.12], i.e. selecting the columns of  mV  

as orthonormal Arnoldi vectors.  

 Arnoldi vectors are orthogonal Krylov vectors, generated by repeated 

multiplication of a starting vector with the working matrix and reorthogonalization 

[8.23]. The subspace is generated by adding one vector at a time and 

orthogonalizing. Vectors already converged are locked, fake vectors are purged 

from the basis, the others are used for further computation in implicit restart. 

 The result of the M-Arnoldi decomposition is a set of Lanczos vectors 

collected in  mV  and the low-order projected matrix 

         m
T

mm VAmVH  , which is symmetric and tridiagonal.  

 One way further is to directly use the eigendecomposition of  mH . Its 

eigenvalues are used to approximate some of the eigenvalues of the data matrix. 

The eigenvectors of the operating matrix are expressed as linear combinations of 

the Lanczos vectors, with the multiplying factors as elements of the eigenvectors of 

 mH  (Fig. 8.6). The power of the method consists in the fact that excellent 

approximations to a few eigenvalues can be obtained after a number of iterations 

significantly smaller than the order of the working matrix.  

 Another general approach (Fig. 8.7) is to first compute a partial Schur form 

of  mH , then to use its eigendecomposition to obtain approximate eigenvalues of 

 A . The matrix of primitive Ritz vectors  kY  can be obtained premultiplying 

the eigenmatrix of  kR  by the matrix of Schur vectors of  mH . Approximate 

eigenvectors of  A  are then obtained as before using the Lanczos vectors. 
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Alternatively, approximate Schur vectors of  A  are first obtained multiplying the 

matrix of Lanczos vectors by the matrix of Schur vectors of  mH . Then, Ritz 

vectors of  A  are obtained multiplying  kU  by the eigenmatrix of  kR .  

 

Fig. 8.7 (from [8.13]) 

 For the M-Arnoldi process, the eigendecomposition of  kR  is not 

necessary. It is mentioned here because it is implemented in existing codes. 

8.6.4  The Lanczos method 

Simple processes, like the power method, require, in principle, an infinite 

number of expensive matrix-vector products to converge to an eigenvector. The 

method of minimized iterations, proposed by Lanczos in 1950, expands each 

eigenvector in a converged series with at most n terms. For eigenvectors belonging 

to extreme eigenvalues the convergence is usually very quick. However, Lanczos’ 

method was first used only as a process to tridiagonalize a symmetric matrix. 

To compete in accuracy with the Givens and Householder method, the 

Lanczos process has to be supplemented with the explicit orthogonalization of the 
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Lanczos vectors which, in exact arithmetic, would be orthogonal automatically. 

One advantage is that the only way the matrix  A  enters the Lanczos algorithm is 

through a subprogram which computes a matrix-vector product. 

In the following we present a Krylov-Lanczos method in exact arithmetic. 

The use of finite precision arithmetic provokes significant departures from the 

exact version, especially the loss of orthogonality among the Lanczos vectors. Left 

to itself, a simple Lanczos program will run forever, finding more and more copies 

of the outer eigenvalues for each new inner eigenvalue it discovers. So it has to be 

stopped after a number of steps, then restarted with a new starting vector [8.24]. 

One simplification with respect to the Arnoldi vectors is that each 

Lanczos vector is made orthogonal to the previous two Lanczos vectors, and this 

makes the present Lanczos vector (theoretically) orthogonal to all prior vectors. 

The following algorithm presents the Lanczos method (in exact 

arithmetic) with emphasis on the physical meaning of Lanczos vectors when the 

starting vector is load dependent [8.25]. While closely related to the powerful and 

popular Lanczos eigensolvers, the procedure discussed here does not employ an 

eigenvector subspace and avoids the computational expense of reorthogonalization. 

The starting vector  1r  can be the static deflection of the structure due 

to the load distribution vector  f , given by 

       frk 1 .    (8.75) 

This vector is mass normalized to form the first Lanczos vector 

   }{
1

}{ 1
1

1 r


v     (8.76) 

where the normalizing factor is 

      111 rmr
T

 .    (8.77) 

The second Lanczos vector is obtained by first solving for the static 

deflection  2r  of the structure subjected to inertia loading due to the first vector 

deflection 

        12 vmrk  .    (8.78) 

Then, the Gram-Schmidt orthogonalization is used to remove the starting 

vector component  1v  of this iterate 

       1122 v rr ,   (8.79) 

where 

       211 rm
Tv     (8.80) 
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is the amplitude of  1v  along  2r . 

Finally, the vector  2r  is mass normalized to form the second Lanczos 

vector 

   }{
1

}{ 2
2

2 r


v ,    (8.81) 

where the normalizing factor is 

      222 rmr
T

 .   (8.82) 

The general Lanczos vector,  jv , ...,,j 43 , is obtained by the 

following steps: 

First, solve the equation 

        jj mrk v1     (8.83) 

for the static deflection   1jr . 

Use the Gram-Schmidt procedure to remove both the  jv  component 

and the   1jv  component of this iterate 

          111   jjjjjj rr vv   (8.84) 

where 

        1 j
T
jj rmv     (8.85) 

and 

        11  j
T
jj rmv    (8.86) 

which can be shown to be just the preceding normalizing factor. 

Finally, mass normalize the vector   1jr  to form the  st1j  Lanczos 

vector 

   }{
1

}{ 1
1

1 


  j
j

j r


v ,   (8.87) 

where the normalizing factor is 

       111   j
T
jj rmr .   (8.88) 

Let  mV  contain the first m Lanczos vectors as columns 
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          mm ,...,,V vvv 21 ,   (8.89) 

and let the corresponding tridiagonal matrix containing the coefficients i  and i  

be 

   



























mm

mm

mT





















000

000

000

00

000

1

33

322

21

.  (8.90) 

The matrix  mT  can be expressed in terms of the Lanczos vectors as 

             m
T

mm VmkmVT
1

 ,  (8.91) 

where 

         mm
T

m IVmV  .   (8.92) 

It can be shown that the differential equation of motion  

       fxkxm  ,   (8.93) 

where  f  is the column vector of external forcing, can be reduced using a Ritz-

type coordinate transformation 

     mm xVx  ,    (8.94) 

to the following form 

      mmmm xIxT   001  T . (8.95) 

Note that the transformed mass matrix is the tridiagonal matrix of 

orthogonalization coefficients, while the transformed stiffness matrix is the identity 

matrix. Also note that the only nonzero forcing term acts on the first Lanczos 

coordinate. The remaining coordinates are only coupled through the off-diagonal 

terms of the transformed mass matrix in equation (8.95). 

There are several improvements of the basic Lanczos method such as the 

shifted Lanczos, the block Lanczos, the two-sided Lanczos, and the implicitly 

restarted Lanczos algorithms [8.12], [8.23]. Their presentation is beyond the aim of 

this lecture course. 
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8.7.  Software 

Numerous codes for solving eigenproblems can be found in the software 

repository Netlib on the Internet at http://www.netlib.org/. They are also 

available by anonymous ftp. 

Reliable high quality software for linear algebra was first published in the 

book edited by Wilkinson and Reinsch [8.26] as Algol 60 subroutines. In the early 

1970s most of these were transcripted in FORTRAN and included in the software 

package EISPACK [8.27] and later in NAG, IMSL and MATLAB packages. The 

Jacobi method was not included in EISPACK and at that time the Lanczos and 

Arnoldi methods were not even considered as candidates.  

EISPACK was superseded in 1995 by LAPACK [8.6]. The authors of 

LAPACK developed new routines and restructured the EISPACK software to 

achieve much greater efficiency, where possible, on modern high-performance 

computers. This was accomplished by writing routines that call all three levels of 

the BLAS (Basic Linear Algebra Subprograms) [8.28].  

In 1970 there were few robust and well-understood iterative methods 

available, and mainly for this reason, these methods were not included in the 

packages constructed then. Since 1998 MATLAB has had iterative methods for 

eigenproblems available and the eigs.m function [8.16] was available in source 

code. 

Improvements made to the Arnoldi method, in particular the implicit 

restart technique [8.17], lead to the ARPACK software [8.21] which seems to be 

the default choice for large sparse eigenproblems. ARPACK makes extensive use 

of BLAS and LAPACK. 

MATLAB files that implement the Lanczos method for finding 

eigenvalues of a symmetric matrix, written by J. Demmel, are available on the 

Internet for the applications in his book [8.29]. The LANSEL eigenpackage based 

on the Lanczos algorithm with selective orthogonalization is presented in [8.30]. 

The subspace iteration code SRRIT [8.31] computes an orthonormal basis 

for the invariant subspace corresponding to the eigenvalues of largest modulus. 

The code LOPSI [8.32] uses a subspace iteration combined with a 

lopsided oblique projection to compute the eigenvalues of largest modulus together 

with the corresponding eigenvectors. 

The JDQZ and JDQR algorithms, described in the paper [8.33], have 

MATLAB 5.1 and FORTRAN 77 implementations available on the Internet. They 

are based on the Jacobi-Davidson method [8.34]. This is an iterative subspace 

method incorporating an effective restart strategy for computing one or more 

eigenvalues and eigenvectors of an eigenproblem. The MATLAB implementation 

is based on algorithms presented in [8.23]. 
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A black-box implementation of the inverse free preconditioned Krylov 

subspace method [8.35] is the eigifp.m MATLAB program that computes a few 

(algebraically) smallest or largest eigenvalues of large symmetric matrices. 

irbleigs.m [8.36] is a MATLAB program for computing a few 

eigenvalues and associated eigenvectors of a sparse Hermitian matrix of large 

order. This program implements a restarted block-Lanczos method with judiciously 

chosen acceleration polynomials. ahbeigs.m is for non-symmetric matrices. 

A unified overview of theory, algorithms, and practical software for 

engineering eigenvalue problems is presented in the book [8.23]. Numerical recipes 

and “black box” methods are given for Hermitian and non-Hermitian eigenvalue 

problems, generalized Hermitian and non-Hermitian eigenvalue problems and 

nonlinear eigenvalue problems.  
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9. 
FREQUENCY RESPONSE 

NONPARAMETRIC ANALYSIS 

The dynamic characteristics of a structure are conveniently described by 

Frequency Response Functions (FRF). In the following, only receptances and 

inertances will be considered, though measured FRFs include mobilities as well. 

FRFs can be expressed in terms of modal parameters. This is the basis of 

parameter identification methods presented in the next chapter. 

This chapter is devoted to the non-parametric analysis of the FRFs. 

Elimination of noise and redundant information from a set of measured FRFs is 

one topic of interest. Evaluation of the number of modes active in the measured 

frequency range is necessary for model building. Determination of optimal 

response measurement and excitation locations is also performed in the pre-test 

phase of experimental modal analysis. All ensuing methods are based on an 

eigenvalue problem, the singular value decomposition or the pivotal QR 

decomposition of FRF matrices. 

9.1  Frequency response function matrices 

FRFs are complex response/excitation ratios measured at discrete 

frequencies. Modal testing procedures in current use are based on response 

functions measured at oN  output coordinates, due to excitation applied at iN  input 

coordinates and fN  frequencies. A ‘complete’ data set consists of ioNNN   

FRFs sampled at fN  frequencies.  

Apart from controllability and observability requirements, oN  is set by the 

desired spatial resolution of mode shapes, while iN  is most often dictated by the 

multiplicity of natural frequencies. The primary basis for the selection of 

input/output locations is the adequate definition of all modes of interest. 
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9.1.1  Frequency response functions 

For single point harmonic excitation 

     t
qq ef̂tf i      (9.1) 

and steady-state single point response 

        t
p

t
pp ex̂ex~tx ii    (9.2) 

the displacement frequency response function (receptance) is defined as 

    
 
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 ii e
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tx
H
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p
pq     (9.3) 

or 

      sinicosi
q

p

q

p
pq

f̂

x̂

f̂

x̂
H  .  (9.4) 

Generally, for excitation  tf  and response  tx , the FRF is defined as 
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  (9.5) 

where  iF  and  iX  are the Fourier transforms of  tf  and  tx ,  iF  is 

the complex conjugate of  iF ,  ixfS  is the cross-spectral density of  tf  and 

 tx , and  ffS  is the power spectral density of  tf . For random or pseudo-

random excitation, the spectral densities can be calculated as Fourier transforms of 

the corresponding correlation functions. 

For multivariate systems, the input-output relationship is defined by an 

FRF matrix 

          11 i  
iioo NNNN FHX    (9.6) 
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An element pqH  of the matrix  H  represents the response at coordinate 

p due to an excitation applied at coordinate q 
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q

p
pq

F

X
H  .     (9.7) 

FRFs can be analyzed either simultaneously, at all frequencies, or in turn, 

at each frequency [9.1]. In the first case, the FRF test data can be arranged in a 2D 

matrix encompassing all FRFs (Fig. 9.1). In the second case, the FRF matrices 

measured at different frequencies can be visualized as arranged in a 3D matrix 

(Fig. 9.2). 

  

    Fig. 9.1         Fig. 9.2 

9.1.2  2D FRF matrices 

 The two-dimensional Compound Frequency Response Function (CFRF) 

matrix (Fig. 9.1) is a multi-frequency matrix containing the whole FRF 

information. It has the form 

          ...H...HHA pqNxNN iof 2111 , (9.8) 

where  pqH  is an fN  dimensional FRF column vector, with response at location 

p due to input at q. Thus, each column corresponds to a different input/output 

location combination for all frequencies. Each row corresponds to different 

individual FRFs all measured at the same frequency. 

 The CFRF matrix can be constructed by first concatenating the columns of 

the rectangular  
io xNNH  matrices into io NN   dimensional column vectors, 

then transposing these column vectors to transform them in rows of the CFRF 

matrix. 

A reduced-rank FRF matrix  
rf xNNA

~
, where  ANr rank , referred to 

as the Aggregate FRF (AFRF) matrix, can be constructed by Principal Component 

Analysis of the CFRF matrix. It provides a condensed representation of FRFs, free 
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of redundant information and with reduced noise. Its row dimension is equal to the 

rank of the CFRF matrix, i.e. the number of modes represented by the test data. 

Simultaneous analysis of the whole FRF information of CFRF-type 

matrices proved to be useful in the estimation of system order and the optimal 

location of sensors and exciters for modal testing. 

However, in many practical applications the original CFRF matrix is 

apparently of full rank due to noise and non-linear effects. Its effective rank can 

hardly be estimated from the decrease of singular values or from the separation of 

the principal response functions.  

One problem of interest can be stated as follows: given a set of io NN   

FRFs (which is redundant, at least owing to reciprocity), find the smallest subset of 

linearly independent FRFs that correctly describe the dynamics of the tested 

structure. This is strongly connected with the choice of measurement coordinates. 

9.1.3  3D FRF matrices 

An alternative is the stepwise analysis of rectangular io NN   FRF matrices, 

at one frequency at a time. The data set can be visualized as a 3D matrix consisting 

of fN  rectangular io NN   FRF matrices (Fig. 9.2). Each horizontal line along the 

frequency axis represents an pqH  FRF measured at a given combination of 

output/input coordinates. Usually oi NN   and fN  is dictated by the required 

frequency resolution of FRFs. 

9.2  Principal response analysis of CFRF matrices 

The singular value decomposition (SVD) of the CFRF multi-frequency 

matrices helps separating the frequency dependence from the spatial dependence of 

FRF data. The analysis of SVD-related quantities calculated for CFRF matrices can 

be used to determine the number of modes present in a given frequency range, to 

identify (quasi-) repeated natural frequencies and to pre-process the FRF data to 

make them more amenable to the modal analysis. 

9.2.1  The singular value decomposition 

Let  A  be a complex m by n matrix, and assume without loss of generality 

that nm  . There exist a unitary m by m matrix  U  and a unitary n by n matrix 

 V , such that [9.2] 
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         VAU
H

,    (9.9) 

where    is the m by n matrix whose top n rows contain  n,...,,  21diag  and  

whose bottom nm  rows are zero. The nonnegative elements i  are the singular 

values, and are sorted so that 021  n  . The columns  iv  of  V  are 

the right singular vectors and the columns  iu  of  U  are the left singular vectors 

of  A . For unitary matrices          m
HH

IUUUU  , 

         n
HH

IVVVV  . The factorization 

         H
VUA  ,    (9.10) 

is called the singular value decomposition (SVD) of  A . 

In (9.10), the last nm  columns of  U  are “extra”; they are not needed to 

reconstruct  A . There is an economy version of the SVD, that saves computer 

memory, in which only the first n columns of  U  and first n rows of    are 

computed. 

Singular values are fairly insensitive to perturbations in the matrix elements. 

The number of nonzero singular values is equal to the rank of the matrix  A . In 

finite precision arithmetic it rarely happens that singular values are equal to zero, 

even if they should have been in exact arithmetic. Therefore, one also uses the 

notation of numerical rank of a matrix. If for some 0  the singular values can be 

ordered as 

 0121   nrr   , 

then we say that  A  has numerical rank r (with respect to  ),   rA rank . The 

matrix  A  is nearly singular when its singular values fall below the limit of 

numerical precision,  , which is often taken to be a multiple of the floating point 

precision. 

The closest matrix to  A  that has rank r is 

       



r

i

H
iiir uA

1

v .   (9.11) 

Replacing  A  by  rA  amounts to filtering the small singular values. 

The SVD of  A  is 

         Hr VUA 







00

0
,   (9.10, a) 
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where    rr ,...,,  21diag . 

The parallel with eigenpairs of a square matrix  A  is made visible through 

writing out (9.9) for the i-th column of    VA , and for the i-th column of 

   UA
H

: 

       iii uA v ,    (9.12, a) 

       iii
H uA v .    (9.12, b) 

Together, these equations can be expressed as a true eigenvalue problem for 

an auxiliary matrix 

  
 

 
 
 

 
 



























i

i
i

i

i
H

uu

A

A

vv


0

0
.  (9.13) 

Other relations, which are of interest in order to understand properties of the 

singular values and singular vectors, are 

         iii
H AA vv 2 ,   (9.14) 

         iii
H uuAA 2 .   (9.15) 

The rectangular m by n matrix  A  has n singular values, which are the 

square roots of the eigenvalues of    AA H . The matrix  HA  has m singular 

values, which are the square roots of the eigenvalues of     HAA . The left 

singular vectors  iu  of  A  are the eigenvectors of     HAA . The right singular 

vectors  iv  are the eigenvectors of    AA H . 

Note that equations (9.14) and (9.15) are not always adequate for the 

computation of accurate singular vectors and singular values, because of the matrix 

products    AA H  and     HAA , which may lead to significantly larger 

perturbations. 

9.2.2  Principal response functions 

 The SVD of the CFRF matrix is of the form 

          H
NNNNNNNN VUA

ff     (9.16) 

where ioNNN  . 
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The SVD decomposes the CFRF matrix into a sum of rank-one matrices 

     H
iiii uA v  of the same size as  A  (Fig. 9.3). Each singular value is 

equal to the Frobenius norm of the associated  iA  matrix 

  
F

ii A      (9.17) 

and can be considered as a measure of its energy content [9.3]. 

 

Fig. 9.3 

 The columns of the matrix  U  are the left singular vectors (LSV), 

sometimes referred to as principal components [9.4] 

       ji

N

j
j

i
i au v  

1

1







.   N,...,i 1   (9.18) 

 They contain the frequency distribution of the energy, being linear 

combinations of the original FRFs that form the columns of  A . The LSV are 

mutually (pairwise) orthogonal vectors, so they are linearly independent. In 

equation (9.18), the multiplying factors jiv  are the complex valued elements of the 

right singular vectors. 
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 Because the left and right singular vectors have unit length, the amplitude 

information is contained in the singular values from the diagonal matrix   , 

arranged in descending order from the upper left. The columns of the matrix  V  

are the right singular vectors (RSV). They describe the spatial distribution of the 

energy contained in the FRF set (Fig. 9.4). 

 

Fig. 9.4 

 The Principal Response Functions (PRF),  iP , defined as the LSVs 

scaled by the respective singular values [9.5], are linear combinations of the 

original FRFs,  ia : 

          



N

j
jjiiiii aAuP

1

 vv .  (9.19) 

 The matrix of Principal Response Functions is 

        UP  .    (9.20) 

Transforming the original FRFs to PRFs amounts to a rotation of 

coordinate axes to a new coordinate system that has inherent energy properties. 

The PRFs give a new set of linearly combined measurements. PRFs are orthogonal 

vectors, each one representing the frequency distribution of an amount of energy 

equal to the square of the related singular value. 
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 Algebraically, Principal Response Functions are particular linear 

combinations of the ioNNN   initial (measured) FRFs. 

 Geometrically, these linear combinations represent the selection of a new 

coordinate system, obtained by rotating the original system, with    pqj HA   as 

the coordinate axes. The unit vectors along these directions are the LSVs which are 

orthonormal. 

 Physically, the new axes represent the directions with maximum power 

(energy) and provide a simpler and more parsimonious description of the FRF data. 

 Indeed, if       HAAC     is the cross-power matrix (power spectrum 

matrix), its spectral decomposition is 

            2
   UUAA H  .   (9.21) 

 One can think of 

   ttx

t

t

d  )(  
2

1

2
      (9.22) 

as the total energy in the response set     tx  over the interval  21  tt . 

 The Frobenius norm of the CFRF matrix is 

   .cA
N

i

N

j
ijF

21

1 1

2
   














 

 

   (9.23) 

 The trace of       HAAC     is related to the total power 

 

           

          .UU

UUAAA

N

i
i

H

HH
F





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1

222

22

   trace   trace          

     trace   trace





  (9.24) 

 Because by definition, r......   21 , the SVD decomposes the 

CFRF matrix  A  into a sum of principal component matrices containing 

decreasing levels of energy. So, one can say that, for example, the first LSV is the 

normalized linear combination of original FRFs (columns of the CFRF matrix) 

with maximum energy (power) content [9.6]. 

 In terms of the matrix of PRFs 
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                     HHHH
PPUUUUAA        

2
   (9.25) 

so that 

            



rN

i

i
HH PPAA

1

2 trace   trace  .  (9.26) 

In many cases, the number of measured FRFs is too large and the FRF data 

set contains redundant information, FRFs being not linearly independent. A way of 

reducing the number of FRFs to be analyzed is to discard the linear combinations 

of FRFs which have small energy and study only those with large energies. 

Otherwise stated, the cross-product matrix of the uncorrelated PRFs should 

be diagonal, representing autopower. Indeed 

                       2
         VAAVVAVAPP HHHH

, (9.27) 

so that the cross-power off-diagonal elements are zero. 

The columns of  P  form a set of orthogonal response functions, each one 

representing an amount of energy equal to the square of the related singular value. 

The first PRF, corresponding to the largest singular value, is the uncorrelated 

response function with the largest autopower. The second PRF has the second 

largest autopower, and so on [9.7]. 

PRFs have peaks at the natural frequencies, as have the FRFs. The modes 

whose shape is similar to the weighting RSV are enhanced, while the other are 

attenuated. For an adequate selection of input/output coordinate combinations, each 

PRF is dominated by a single mode of vibration. Single degree of freedom 

identification techniques can be used to determine the corresponding modal 

parameters [9.8]. For a non-optimal location of sensors and excitation coordinates, 

resulting in an insufficient spatial independence of the modal vectors, and for 

limited spatial resolution, a PRF can have multiple peaks, especially when this is 

backed by insufficient frequency resolution. 

The plot of left singular vectors versus frequency helps locating the natural 

frequencies, but it is rather confusing for noise polluted data. A similar plot of 

PRFs is more useful. PRFs with low energy level are LSVs multiplied by small 

singular values, so the respective curves are shifted down. A gap in the singular 

values produces a marked separation of PRFs containing useful information from 

those with negligible energy content and polluted by noise. If the first rN  PRFs are 

separated from the others in the upper part of the PRF plot, then rN  can be chosen 

as the effective rank of the CFRF matrix. However, the vertical shifting of the PRF 
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curves, due to the multiplication of LSVs by the singular values, can obscure the 

highest peaks, if not located by distinctive marks. 

9.2.3  The reduced-rank AFRF matrix 

 If rN = rank  A , then, setting the singular values 0i  for 1 rNi  to 

N , equation (9.16) becomes 

       
 

 
 
 

H

s

rr
srxNN V

V
UUA

~
rf 


















0


, (9.28) 

where  A
~

is referred to as the Aggregate FRF (AFRF) matrix. 

 
Fig. 9.5 

 The columns of the AFRF matrix  A
~

represent a condensed set of FRFs. 

In the case of orthogonal noise, the original CFRF matrix  A  can be 

approximated by the reduced-rank reconstructed AFRF matrix (Fig. 9.5) 

        H

xNNrxNNrxNN rrrfrf
VPA

~
 .  (9.29) 
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 The reduced-rank matrix of Principal Response Functions is 

           H

xNNrxNNxNNrxNNrxNNr
rrrfrrrfrf

VA
~

UP


  . (9.30) 

Example 9.1 

 Figure 9.6 shows the 15-DOF lumped parameter system of Example 5.8 

and its physical parameters [9.9]. Table 9.1 lists the system damped natural 

frequencies and damping ratios.  

 

Fig. 9.6 

Table 9.1   Natural frequencies and damping ratios of 15-DOF system 

 
 

Mode 

Natural 

frequency 

Hz 

Damping 

ratio, 

% 

 

Mode 

Natural 

frequency 

Hz 

Damping 

ratio, 

% 

1 15.98 0.50 9 68.88 1.38 

2 30.86 0.97 10 73.72 1.58 

3 43.60 1.36 11 128.87 0.54 

4 46.47 0.30 12 136.59 0.51 

5 53.35 1.67 13 143.89 0.48 

6 53.42 0.67 14 150.87 0.46 

7 59.45 1.85 15 157.52 0.44 

8 61.62 1.06    

 

 The analytical data set is constructed such that there are 10 modes of 

vibration in the frequency range 10-100 Hz and 5 modes between 120-160 Hz, with 

a quasi-repeated mode at about 53.4 Hz. 

 Receptance FRFs were computed at 1024 frequencies between 10-180 Hz 

for different input/output combinations. Both additive noise and multiplicative 

noise was added to theoretical data, as in reference [9.5]. The noise level is scaled 
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such that its mean deviation was the stated percentage of the mean magnitude of 

the CFRF matrix. 

 In the following, two cases will be considered [9.1]. In Case I, the system 

is 'tested' by excitation applied on masses 5 and 11, and the response is ‘measured’ 

at masses 3, 5, 9, 11, 15. The CFRF matrix, of size 1024x10, polluted with 5% 

multiplicative noise, is used as the test data. In Case II, the input points are on 

masses 5, 9, 11 and the output points are on masses 3, 5, 9, 11, 15. The additional 

input point at 9 is on a small mass, introducing local modes. In this case, the CFRF 

matrix is of size 512x15 and is polluted with 0.5% additive noise. 

9.2.4  SVD plots 

Because the singular values are a weighting factor for the corresponding 

singular vectors, the number of significant singular values presents an estimate of 

the number of mode shapes that comprise the  A  matrix. In the case of ideal, 

noise-free data, all non-significant singular values will be zero. In the case of real 

data, the non-significant singular values will not be zero. As singular values are 

indexed in descending order, a gap in the singular values indicates a rank-deficient 

matrix. 

 

    Fig. 9.7 

The significant singular values can be separated from the unimportant 

ones. One way to do this is to plot the magnitudes of the singular values as a 

function of their index. A steep drop (large negative slope) will appear at the index 

which defines the useable rank of test data. Another way is to plot the ratio of 

successive singular values. A distinct through in the diagram indicates the 

numerical rank of FRF data. Both of these methods are illustrated in Fig. 9.7, 

computed for Case I. 
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In the upper plot in Fig. 9.7, magnitudes of the singular values are plotted 

on a logarithmic scale, normalized to the largest singular value. The sudden drop in 

the curve after the fourth singular value indicates that there are four significant 

singular values, or four modes in the frequency band. This conclusion is supported 

by the second of the two plots, which shows a distinct minimum at the index 4. The 

plots of singular values give a clear indication of rank .Nr 4  

 

      Fig. 9.8 

In Case II, the plots of singular values (Fig. 9.8) indicate a rank .Nr 6  

9.2.5  PRF plots 

It is reasonably to expect that the numerical limit for the test data is due to 

noise and errors in the measured data, rather than due to the limits of floating point 

representation [9.5]. A matrix of test data contains noise.  

The rank-limited matrix  A
~

 contains data separated from the noise. The 

original matrix  A  can be approximated by      H
rr VPA

~
  using only the 

first rN  columns of  rP  and  rV . The inspection of the columns of  P  is 

helpful in estimating the useable rank of  A  when noise is present. The 

separation of the data space from the noise space in the measured data is expected 

to be evidenced by an abrupt change in the shape of the columns of  P  beyond 

the rN -th column. 
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Fig. 9.9 

 Figure 9.9 shows nine PRFs computed for Case I over the whole frequency 

band. Only four PRFs have higher magnitude, confirming the rank 4 of data. The 

lower five PRFs correspond to the five local modes due to masses 3, 6, 9, 12, 15. 

 

Fig. 9.10 

 Figure 9.10 shows six PRFs for Case II, two of them having high 

magnitude due to the local modes between 100-180 Hz. The scaling of PRFs by the 

singular values makes them less appropriate for use as modal indicators. 
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9.2.6  Mode indicator functions 

Mode Indicator Functions (MIFs) are real-valued frequency-dependent 

scalars that exhibit local minima or maxima at the modal frequencies of the system. 

The left singular vectors of the CFRF matrix contain the frequency information and 

are used to construct MIFs. The number of curves in such a MIF plot is equal to the 

effective rank of the CFRF matrix. If this is lower than the number of response 

coordinates, a single point excitation can locate even double modes.  

 9.2.6.1   The UMIF 

 The left singular vectors  iu  of the CFRF matrix  A  contain the 

frequency distribution of energy and are linear combinations of the measured FRFs 

(9.18). Their plot versus frequency is the U-Mode Indicator Function (UMIF) 

[9.10]. The UMIF has peaks at the damped natural frequencies. The UMIF shown 

in Fig. 9.11 is computed for the 15-DOF system from Fig. 9.6. It locates all 15 

modes. 

 

Fig. 9.11 

 9.2.6.2   The CoMIF 

The Componentwise Mode Indicator Function (CoMIF) is defined [9.11] 

by vectors of the form 

           iii uuCoMIF 1 ,  (9.31) 

computed as the difference between a column vector of ones and the Hadamard 

product of the left singular vectors. In equation (9.31) the star superscript denotes 

the complex conjugate.  
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In the CoMIF plot, the number of curves is equal to the estimated effective 

rank of the CFRF matrix. Each curve has local minima at the damped natural 

frequencies, with the deepest trough at the natural frequency of the corresponding 

dominant mode.  

 

Fig. 9.12 

The CoMIF shown in Fig. 9.12 is computed for the 15-DOF system, using 

noise free FRFs for excitation at points 3 and 15, and response at points 1, 10 and 

15. The estimated rank of the CFRF matrix is 15, so it contains 15 overlaid curves 

which locate all 15 modes of vibration. Again, in order to better locate the natural 

frequencies, the lowest trough of each curve is marked by circles. 

 

    Fig. 9.13 
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 Sometimes it is better to plot each CoMIF curve separately like in Fig. 9.13 

[9.6]. Subplots correspond to individual CoMIFs with the index shown on the left. 

The deepest trough in each subplot locates a mode of vibration. Use of cursors (not 

shown) enables a more accurate location of damped natural frequencies. 

 9.2.6.3   The AMIF 

 The Aggregate Mode Indicator Function (AMIF) is defined as [9.1] 

        AAAMIF  diag ,   (9.32) 

where  


  denotes the pseudoinverse. 

 It is seen that   AA  is the orthogonal projector onto the column space of 

 A . Each diagonal element of   AA   represents the fractional contribution of the 

respective frequency to the rank of  A  and hence to the independence of its 

columns. 

 The AMIF is a plot of the diagonal elements of   AA  , on a log 

magnitude scale, as a function of the respective frequency. The peaks detected in 

the AMIF plot locate natural frequencies to the nearest frequency line. Sometimes, 

troughs in the 1-AMIF plot allow better location of the dominant modes of 

vibration. It must also be noted that since AMIF is a single curve plot, it cannot 

locate nearly coincident natural frequencies or double modes.  

 AMIF is influenced by noise in data. In order to minimize the influence of 

noise, the AMIF applied to the rank-limited reconstructed AFRF matrix is: 

   MIFA
~

 = diag     





 

A
~

A
~

 .   (9.33) 

 Peaks detected in this AMIF locate the modes of vibration that effectively 

contribute to the AFRF matrix. Their number is usually equal to the number of 

significant singular values of  A . Since the columns of  A
~

 are linear 

combinations of PRFs, the AMIF applied to  A
~

 exhibits low values between 

resonances and high values at the natural frequencies of the dominant modes. 

 If the first rN  columns of the  U  matrix form an orthogonal basis for the 

column space of the CFRF matrix, the orthogonal projector onto the column space 

of  A  is equal to the orthogonal projector onto the subspace of left singular 

vectors 

      













 



rN

i

H
ii uuAMIF

1

 diag .   (9.34) 
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 For Case I, the AMIF plot from Fig. 9.14, based on the original data 

(CFRF matrix) exhibits nine peaks in the range 10-100 Hz and five peaks between 

100-180 Hz, missing only the double mode at 53.4 Hz.  

 The AMIF based on reduced-rank data (AFRF matrix) exhibits only six 

peaks, while the 1-AMIF plot exhibits four marked troughs, indicating the four 

dominant modes of vibration.  

 The AMIF computed from the original test data indicates the local modes, 

while the AMIF computed from reduced-rank data locates only the dominant 

modes.  

 The AMIF cannot show a double mode. 

 

Fig. 9.14 

 For Case II, the AMIF plot from Fig. 9.15, based on original data, shows 

only two peaks between 100-180 Hz, as well as the close modes at 43.6 and 46.5 

Hz. An AMIF computed for 0.5% multiplicative noise (Fig. 9.16) locates 14 modes 

(only the double mode missing).  

 At the same time, the AMIF plot from Fig. 9.17, based on the AFRF 

matrix, shows only one peak between 100-180 Hz.  

 The 1-AMIF plot from Fig. 9.18 clearly shows six dominant modes 

corresponding to a rank .Nr 6  
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Fig. 9.15 

 

Fig. 9.16 
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    Fig. 9.17 

 

    Fig. 9.18 

9.2.7  Numerical simulations 

 Two more numerical simulation examples are considered in the following: 

an 11-DOF lumped parameter system with structural damping and a 7-DOF system 

with viscous damping. 

 9.2.7.1   11-DOF system 

 Consider the 11-DOF system with structural damping of Example 5.7 

shown in Fig. 9.19. Its physical parameters and the modal parameters are given in 

Table 9.2 [9.12]. Due to mass and stiffness symmetry, the system has five pairs of 

complex modes with close natural frequencies. In each pair, one mode is 

predominantly symmetrical while the other mode is predominantly anti-

symmetrical. The right hand branch (masses 6 to 11) has higher damping values 

than the left hand branch.  
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Fig. 9.19 

Table 9.2: Physical and modal parameters of the 11-DOF system 

 
 

 

i 

Mass Stiffness 
Structural 

damping 

Natural 

frequency 

Damping 

factor Mode 

r 
im  ik  id  r  rg  

kg N/m N/m Hz % 

1 1 2421 96.8 2.74 8.93 1 

2 1 2989 149.5 2.95 9.05 2 

3 1 3691 221.4 7.27 8.86 3 

4 1 4556 318.9 7.78 9.12 4 

5 1 5625 450.0 11.54 8.77 5 

6 1 18000 1620.0 12.08 9.20 6 

7 1 5625 562.5 15.12 8.64 7 

8 1 4556 501.2 15.51 9.34 8 

9 1 3691 442.9 18.54 8.89 9 

10 1 2989 388.6 19.27 9.11 10 

11 1 2421 339.0 28.58 9.00 11 

 

Receptance FRFs were computed at 1024 frequencies between 10-180 Hz, 

for different input/output combinations. Additive noise or multiplicative noise was 

added to theoretical data, as in reference [9.1]. The noise level was scaled such that 

its mean deviation was the stated percentage of the mean magnitude of the CFRF 

matrix.  

The plots of singular values shown in Fig. 9.20 give a clear indication of 

rank .Nr 11  
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Fig. 9.20 

 In Fig. 9.21 are shown PRFs computed with 5 percent multiplicative noise. 

It is easy to see that the first eleven stand out as looking like FRFs, while the 

remaining functions define a “noise floor”, below 
510 . It means that the entire 

FRF matrix, which is of rank 11, can be represented by these first 11 PRFs, 

together with the first 11 columns of  V . 

 

      Fig. 9.21 
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 The UMIF shown in Fig. 9.22 is based on FRFs calculated for excitation at 

only one point and response measurement at all 11 points, with noise free data. It 

clearly locates all 11 modes of vibration. 

 

Fig. 9.22 

 The UMIF shown in Fig. 9.23, computed for excitation at points 1 and 11, 

and response at only six points 1, 3, 5, 7, 9, and 11, also locates all 11 modes. In 

order to better locate the natural frequencies, the peaks are marked by small circles. 

 

Fig. 9.23 

 The AMIF and 1-AMIF plots shown in Fig. 9.24 are calculated using FRFs 

for excitation at points 1 and 11, and response at points 1, 3, 5, 7, 9 and 11. As 

expected, they cannot locate relatively close natural frequencies. 
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 Fig. 9.24 

 The CoMIF shown in Fig. 9.25 is computed using FRFs for excitation at 

points 1 and 11, and response at points 1, 3, 5, 7, 9 and 11. The estimated rank of 

the CFRF matrix is 11, so it contains 11 overlaid curves which locate all 11 modes 

of vibration. Again, in order to better locate the natural frequencies, the lowest 

trough of each curve is marked by a circle. 

 

Fig. 9.25 

 The same CoMIF is presented in Fig. 9.26 with each curve plotted 

separately. Subplots correspond to individual CoMIFs with the index shown on the 

left. The deepest trough in each subplot locates a mode of vibration.  
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Fig. 9.26 

The CoMIF with overlaid curves from Fig. 9.27 is computed for the same 

system, using FRFs for excitation at point 6 and response measurement at all 11 

points. It clearly locates all 11 modes of vibration, despite the single point 

excitation in a system with pairs of close natural frequencies and relatively high 

damping. 

 

Fig. 9.27 
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Fig. 9.28 

 The same CoMIF with individual curves displayed separately in subplots is 

shown in Fig. 9.28.  

 9.2.7.2   7-DOF system 

 Figure 9.29 shows a 7-DOF system [9.13] and its physical parameters. 

 

Fig. 9.29 

 Using only 7 receptance FRFs as ‘test’ data, calculated for excitation at 

mass #7 and response at all 7 masses, then polluted with 1% additive noise, the 

PRF plot from Fig. 9.30, a shows that the mode which is resonant at 28.12 Hz is 

buried in noise. The same plot is shown in Fig. 9.30, b for noise free data. 
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     a    b 

Fig. 9.30 

 The plot of left singular vectors from Fig. 9.31, a shows that the UMIF 

becomes difficult to be interpreted in the case of noisy data. The same plot is 

shown in Fig. 9.31, b for noise free data. 

  
a b 

Fig. 9.31 

  
a b 

Fig. 9.32 
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 The CoMIF plot from Fig. 9.32, a turns out to be a better modal indicator 

even when a weak mode makes the associate curve highly influenced by noise. 

Again, the same plot is shown in Fig. 9.32, b for noise free data. 

 

Fig. 9.33 

 Figure 9.33 illustrates individual CoMIF plots for the first six principal 

components of the CFRF matrix. The accuracy in locating natural frequencies is 

influenced, apart from the frequency resolution, by the noise in data. 

9.2.8  Test data example 1 

 The inertance FRFs in this example were measured on the fan case shown 

in Fig. 9.34, at 12 locations around the lower rim, from each of the three force 

input locations 2, 3 and 50, in the frequency range 24 to 224 Hz. The frequency 

resolution was 0.25 Hz [9.1].  

 Each FRF contains 801 frequency points. The CFRF matrix is of size 

36801 . The inputs were not a strict subset of the outputs and only one column of 

the CFRF matrix was redundant due to reciprocity. 
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Fig. 9.34 

 The singular value plots (Fig. 9.35) of the CFRF matrix indicate a rank 

.Nr 6  

 

      Fig. 9.35 

 The first six PRFs are shown in Fig. 9.36, calculated based on only 12 

FRFs obtained with excitation at point 50. This plot reveals only the six most 

observable modes of vibration, i.e. two pairs of quasi-repeated eigenfrequencies at 

103.1 and 177.9 Hz, and other two dominant modes at 45.75 and 75.7 Hz. 

 The AMIF is shown in Fig. 9.37. Applied to the original data, it reveals as 

many modes as the PRF plot, but applied to the reduced-rank data, it indicates only 
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four dominant modes. The difference is the number of double modes that cannot be 

shown by a single-curve MIF.  

 

       Fig. 9.36 

 

     Fig. 9.37 
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Fig. 9.38 

 
Fig. 9.39 

 Figure 9.38 is a presentation of the AMIF and 1-AMIF plots based on 

original data, while figure 9.39 shows the same plots for rank-limited data. 

 

  Fig. 9.40 
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 Figure 9.40 shows the first six left singular vectors of the CFRF matrix. 

This plot is used as the U-Mode Indicator Function (UMIF), to reveal repeated 

modes. Indeed, at 103.1 and 177.9 Hz, two pairs of curves are superimposed. They 

should be differently colored to be distinguished from each other.  

 

    Fig. 9.41 

 The CoMIF with overlapped curves is presented in Fig. 9.41. 

9.3  Analysis of the 3D FRF matrices 

 When the FRFs can be analyzed in turn, at each frequency, the data set can 

be visualized as a 3D matrix consisting of fN  rectangular io NN   FRF matrices 

(Fig. 9.2). Various MIFs have been developed based on either the singular value 

decomposition (SVD) of each  
io NNH   matrix or on an eigenproblem involving 

the real and imaginary parts of the   H matrices. Examples are the CMIF 

[9.14], the MMIF [9.15] and the related MRMIF, ImMIF and ReMIF [9.16]. There 

are as many curves in a plot as the number of references.  

9.3.1  The CMIF 

 The economical SVD of the FRF matrix at each spectral line is defined as 

         H

NNNNNNNN iiiiioio
VΣUH

  ,  (9.35) 

where  Σ  is the diagonal matrix of singular values,  U  is the matrix of left 

singular vectors and  V  is the matrix of right singular vectors. Matrices  U  and 

 V  have orthonormal columns. 

 The Complex Mode Indicator Function (CMIF) is defined [9.14] by the 

singular values plotted as a function of frequency on a logarithmic magnitude 

scale. The number of CMIF curves is equal to the number of driving points. The 
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largest singular values have peaks at the damped natural frequencies. The 

frequencies where more than one curve has a peak are likely to be repeated natural 

frequencies.  

 Early versions used the square of the singular values, calculated as the 

eigenvalues of the normal matrix    HH
H

. The left singular vectors are 

proportional to the mode shape vectors, and the right singular vectors relate to the 

modal participation factors. 

 It is recommended to plot ‘tracked’ CMIFs, connecting points which 

belong to the same modal vector, instead of ‘sorted’ CMIFs, in which points are 

connected simply based on magnitude. A detailed review of the CMIF and 

enhanced FRF concepts is given in [9.17]. Use of the  IH  matrix instead of  H  

has some advantages in the location of modes. 

 The CMIF performance declines for structures with very close frequencies 

and high damping levels. In such cases, two different curves exhibit flat peaks at 

very close frequencies which have to be located by cursors. The high damping 

merges the otherwise distinct close peaks.  

 

Fig. 9.42 

 Figure 9.42 presents the CMIF plot computed for the 15-DOF system of 

Fig. 9.6, using 35  FRF matrices for excitation at 1, 10, 15 and response at 3, 6, 9, 

12 and 15. It clearly locates the close modes at 53.35 and 53.42 Hz. 



9. FREQUENCY RESPONSE ANALYSIS  133 

 

Fig. 9.43 

 The CMIF from Fig. 9.43 is computed for 5 by 5 FRF matrices, using the 

same input and output points at the small masses 3, 6, 9, 12, and 15. 

9.3.2  Eigenvalue-based MIFs 

 In the definition of these MIFs, a cost function is first defined as the ratio 

of some norms of either the real, the imaginary or the total response. Expressing 

response vectors in terms of force vectors and the FRF matrix, the 

mini(maxi)mization problem takes the form of a Rayleigh quotient. This is 

equivalent to a frequency-dependent eigenvalue formulation, involving normal 

matrices, formed from the FRF matrix or its real and imaginary components. MIFs 

are defined by the eigenvalues of these matrix products, plotted against frequency. 

The existence of a mode of vibration is indicated by distinct troughs, peaks or zero 

crossings in the MIF plot. 

 9.3.2.1  The MMIF 

 For a linear time-invariant structure, at each frequency, the relationship 

between the complex vector of steady-state response,  x~ , and the real force 

vector,  f , is given by 
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                        fHHfHxxx~ IRIR  iii  ,     (9.36) 

where  
io NNH   is the displacement FRF matrix. Usually, the number of input 

(excitation) points, iN , is less than the number of output (response) points, oN . In 

a given frequency band, the number of dominant modes (effective degrees of 

freedom) rN  is less or equal to the smallest dimension of the FRF matrix. 

 The Multivariate Mode Indicator Function (MMIF) is defined [9.15] by 

the eigenvalues of the generalized problem 

               fHHHHfHH I
T

IR
T

RR
T

R  , (9.37) 

plotted against frequency.  

 The matrix products in (9.37) are of order iN  so that there are as many 

MMIF curves as driving points. The curve of the smallest eigenvalue exhibits 

troughs at the undamped natural frequencies (UNFs). These minima correspond to 

minima of the cost function given by the ratio of the Euclidian norm of the in-

phase response vector to the norm of the total vector response 

   


2

2

i
min

IR

R

xx

x
.    (9.38) 

 The minimization problem (9.38) can be written in the form of a Rayleigh 

quotient 

  
      

           








  fHHHHf

fHHf

I
T

IR
T

R
T

R
T

R
T

min , (9.39) 

which is equivalent to the frequency-dependent eigenproblem (9.37). 

 Small MMIFs at troughs is a measure of the purity of mode isolation by the 

applied forcing vector. Higher MMIF values at minima indicate poorly excited 

modes. The frequencies where more than one curve has a minimum are likely to 

indicate multiple natural frequencies. Sometimes, not all troughs in the MMIF 

indicate modes.  

 Usually, MMIF curves are plotted as a function of magnitude, based on 

sorted eigenvalues. Points representing the smallest eigenvalue, the second smallest 

eigenvalue, etc. are connected separately. This gives rise to the ‘cross-eigenvalue 

effect’ at frequencies where at least two curves cross each other. Cross-over 

troughs occur, which have to be carefully analyzed. They prevent the use of an 

automatic through detector to locate eigenfrequencies. The problem is alleviated by 

the use of tracked MMIFs, plotted by connecting points corresponding to the same 

modal vector. 
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 Apart from cross-eigenvalue effects, antiresonances can produce fallacious 

troughs. Hence, it is recommended to use the MMIF not on its own but together 

with other MIFs or with the composite response spectrum to confirm the validity of 

its minima. 

 

Fig. 9.44 

 Figure 9.44 presents the MMIF plot computed for the 15-DOF system of 

Fig. 9.6, using the same FRFs as for Fig. 9.42. The plot locates all 15 modes. 

 The inverted MMIF [9.18] is defined by the eigenvalues of the spectral 

problem 

               fHHHHfHH I
T

IR
T

RI
T

I   , (9.40) 

where  1 . Undamped natural frequencies occur at maxima of the largest 

eigenvalue, with multiple eigenfrequencies indicated by peaks in the next highest 

eigenvalues. 

 In fact, the undamped natural frequencies indicated by the MMIF are 

frequencies at which the closest approximation to an undamped normal mode can 

be excited from the forcing points available. The corresponding eigenvector 

calculated at this frequency gives the appropriate force distribution. 

 9.3.2.2  The MRMIF 

 The modified real mode indicator function (MRMIF) is defined by the 

frequency dependence of the eigenvalues of the generalized problem 

             fHHfHH I
T

IR
T

R  . (9.41) 

 Like the MMIF concept, this is based on a Rayleigh quotient 

   
      

      


fHHf

fHHf

I
T

I
T

R
T

R
T

min ,  (9.42) 
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but is generated by minimizing the ratio of the Euclidian norm of the in-phase 

response vector to the norm of the quadrature response vector only [9.19] 

   
2

2

min

I

R

x

x
.    (9.43) 

 MRMIF eigenvalues are plotted on a log magnitude scale (to reduce the 

difference between dips) as a function of frequency, having similar shapes as the 

MMIF curves. Undamped natural frequencies are located at the minima in the 

MRMIF curves. Interpretation of dips in higher order MRMIFs is rather difficult 

on sorted curves and prevents the use of an automatic mode detector. 

 

Fig. 9.45 

 Figure 9.45 shows the MRMIF plot computed for the 15-DOF system of 

Fig. 9.6, using the same data as for the MMIF from Fig. 9.44.  

 The inverted MRMIF is defined by the eigenvalues of the spectral problem 

             fHHfHH R
T

RI
T

I  . (9.44) 

 The undamped natural frequencies occur at maxima of eigenvalues. The 

shape of curves resembles the inverted MMIF. 

 Use of the quotient singular value decomposition (QSVD) is recommended 

to solve the spectral problem (9.41). This avoids formation of the matrix products, 

which causes loss of half of the numerical relative accuracy. QSVD implies the 

simultaneous SVD of matrices  RH  and  IH , using the same orthonormalized 

right singular vectors [9.20]. 
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 9.3.2.3  The ImMIF 

 The imaginary mode indicator function (ImMIF) is defined as the 

eigenvalues of the spectral problem 

         ffHH I
T

I     (9.45) 

plotted against frequency [9.21]. The equivalent Rayleigh quotient formulation is 

   
       

   


ff

fHHf
T

I
T

I
T

min .  (9.46) 

 Local peaks of the largest eigenvalues define the undamped natural 

frequencies. The singular values of the  IH  matrix can be used to avoid loss of 

numerical accuracy due to the squaring in the Gram matrix. This is equivalent to 

using the  IH  matrix instead of  H  in the CMIF. 

 

Fig. 9.46 

 Figure 9.46 shows the ImMIF plot computed for the 15-DOF system of 

Fig. 9.6, using the same data as for the CMIF from Fig. 9.42.  

 9.3.2.4  The RMIF 

 The RMIF is defined by the frequency dependence of the eigenvalues of 

the matrix product    RI HH


, where   denotes the Moore-Penrose 

pseudoinverse [9.22]. They are a measure of the ratio of reactive energy to the 

active energy transmitted to the structure during a cycle of forced vibrations. 
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 There are as many RMIF curves as points of excitation, iN . Each curve 

can cross the frequency axis several times. Only zero crossings with positive slope 

indicate undamped natural frequencies. Multiple (or closely spaced) 

eigenfrequencies can be revealed by several curves crossing the frequency axis 

(almost) at the same frequency. Appropriated force vectors are obtained from the 

eigenvectors calculated at the undamped natural frequencies. For a given scaling of 

force vectors [9.23], the slopes at zero crossings are proportional to the modal 

masses. Diagonal modal damping coefficients are proportional to the inverses of 

the undamped natural frequencies. 

 The theoretical background of the RMIF is different from that of other 

MIFs. Instead of looking directly for a real normal mode, by minimizing the ratio 

of out-of-phase energy to total energy, the concept of monophase forced modes of 

vibration is used. The monophase condition, implying proportionality between the 

real part and the imaginary part of the response vector (minus sign omitted),  

      IR xx  , 

yields the frequency dependent spectral problem of a rectangular matrix pencil 

                fHfH IR  .  (9.47) 

 At a given frequency  , a monophase excitation vector  f  gives the 

force distribution that can produce the closest approximation to a (real) monophase 

response vector. The two real vectors are not in phase with one another. 

Monophase excitation vectors are modal filters developing energy only in the 

corresponding reduced response modal vector. The theory of monophase modal 

vectors (Section 7.4) explains why only positive zero crossings indicate undamped 

natural frequencies.  

 Because the matrices in equation (9.47) are rectangular, the spectral 

problem can be solved only approximately. A pure monophase mode cannot be 

excited because the number of exciters is not sufficient to cancel, at each reference 

point, the damping forces and the reactive forces, so as to ensure the equiphase 

condition. Mathematically, the number of equations oN  is larger than the number 

of unknowns iN . The solution is to find a scalar   and a force vector  f  to 

minimize 

          IR xx , 

i.e., the residual formed by the difference of the two members of equation (9.47). 

 The best procedure is to form the quadratic residual    
T

 and to 

divide it by the Euclidian norm of the displacement amplitude, and to minimize the 

scalar function 
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 ,    (9.48) 

or 
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
 .  (9.49) 

This is independent of the scaling of forcing vectors [9.24]. 

 The conditions of minimum are 

   
 

0




f


 and 0








.  (9.50) 

 The first condition yields the eigenvalue problem 

            fBAfE  .  (9.51) 

 The second condition gives the quotient 

   
   

   

     

    fBf

fCf

xx

xx
T

T

I
T

I

R
T

I  ,  (9.52) 

where 

            BDCAE 2  , 

       R
T

R HHA  ,      R
T

I HHC  ,  (9.53) 

       I
T

I HHB  ,      I
T

R HHD  . 

 The eigenvalue form of (9.52) is 

         fBfC  .  

or 

            fHHfHH I
T

IR
T

I  .  (9.54) 

 If  IH  has full column rank, equation (9.51) can be written 

             ffHHHH R
T

II
T

I 
1

  (9.55) 

or 

         ffHH RI 


.   (9.55, a) 
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 The eigenvalues   vanish at the undamped natural frequencies of the 

system. The pseudoinverse of the matrix  IH  can be calculated in a principal 

component sense, performing its singular value decomposition and cancelling the 

negligible singular values before inversion. This diminishes the sensitivity to the 

rank-deficiency of the FRF matrix and noise encountered with the standard 

formulation [9.23], which can give spurious zero crossings. Unlike other methods, 

the RMIF offers no assessment of mode purity. 

 

Fig. 9.47 

 Figure 9.47 shows the RMIF plot computed for the 15-DOF system of Fig. 

9.6, for a frequency range encompassing only the first ten modes. 

9.3.3  Single-curve MIFs 

 The first single-curve MIF was developed by Breitbach in 1973 [9.25] at 

DFVLR (German Aerospace Research Establishment) for the modal survey of 

complex aircraft structures. It helped in the selection of optimal force vectors to 

isolate normal modes of a structure. In the following it is denoted MIF1. 

 At each frequency the MIF1 is defined as 

   

 
 

 

  Re  
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


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MIF1 ,  (9.56) 

where the sums extend over io NNN   FRF functions. Note that 11 MIF  has 

dips instead of peaks [9.26]. 
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 The somewhat complementary MIF2 is defined [9.27] as 
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MIF2 .  (9.57) 

 They both locate the frequencies where the forced response is closest to the 

monophase condition.  

 

Fig. 9.48 

 Figure 9.48 shows the MIF1 plot computed for the 15-DOF system of Fig. 

9.6, using 15 FRFs for excitation at 1, 10, 15 and response at 3, 6, 9, 12 and 15. It 

locates only 13 modes. 

 

Fig. 9.49 



142                                                                                           MECHANICAL VIBRATIONS 

 Figure 9.49 shows the MIF2 plot computed for the same data as Fig. 9.48. 

It locates only 12 modes of vibration. 

9.3.4  Numerical simulations 

 The numerical simulation examples presented in the following are 

calculated for the 11-DOF lumped parameter system used in Section 9.2.7.1 and 

for a 5-DOF system with hysteretic damping. 

 9.3.4.1   11-DOF system 

 For the 11-DOF system with hysteretic damping of Fig. 9.19, a typical 

CMIF plot is shown in Fig. 9.50. It exhibits 6 peaks in the upper curve and 4 peaks 

in the lower curve, failing to locate one mode. Cursors are necessary to locate the 

damped natural frequencies. Figure 9.51 shows the MMIF plot computed for the 

same 27  FRF matrices as the CMIF. It locates all 11 modes.  

 

Fig. 9.50 

 

Fig. 9.51 
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 The CMIF performance declines for structures with relatively close 

frequencies and high damping levels. When two curves exhibit flat peaks at very 

close frequencies these have to be located by cursors. The high damping merges 

the otherwise distinct close peaks. In such cases the MMIF performs better because 

it locates the undamped natural frequencies, which are more distant from one 

another than the corresponding damped natural frequencies indicated by the CMIF. 

 

 

 

 

 

a b 

  
c d 

  
e f 

Fig. 9.52 
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 Six different MIFs are compared in Fig. 9.52, for excitation at mass 6 and 

response measurement at all 11 masses. The UMIF and CoMIF plots locate all 11 

modes, while the other MIFs fail to locate the quasi-double modes. The CMIF, 

MMIF and RMIF plots have been expected not to locate all of them from single 

point excitation, because the number of curves is equal to the number of inputs, 

while MIF1 is a basically a single curve MIF. 

 9.3.4.2   5-DOF system 

 The five degrees of freedom system with structural damping from Fig. 9.53 

[9.28] will be used for a comparison of MIFs. Two different FRF data sets (free of 

noise) will be used in the simulation: case 1 - excitation at points 1, 4 and response 

measurement at points 1, 2, 4; case 2 - excitation at 1, 2 and response measurement 

at 1, 2, 4. 

 

              kgm 1  

      mNkk 242051  , 

     mNkk 300042  , 

             mNk 180003  , 

mNd 1001  , 

mNd 2002  , 

mNd 16203  , 

mNd 4004  , 

mNd 3005  , 

Fig. 9.53 

 The undamped natural frequencies are 4.689, 5.213, 12.366, 13.092 and 

25.131 Hz. Depending on the FRF data used, the MMIFs can be erroneous 

indicators. The MMIF plot in Fig. 9.54, a has a fallacious trough at 7.8 Hz, 

produced by an antiresonance, while the MMIF in Fig. 9.54, b does not indicate all 

modes.  

  
a b 

Fig. 9.54 

 The damped natural frequencies are 4.702, 5.202, 12.449, 13.015 and 

25.131 Hz. The CMIF plot in Fig. 9.55 indicates all five modes and performs better 

than the MMIF from Fig. 9.53, but the CMIF in Fig. 9.56 fails to indicate one 

mode, having only four peaks. This is due to the particular selection of input 

points. 
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        Fig. 9.55           Fig. 9.56 

  

    Fig. 9.57          Fig. 9.58 

 

Fig. 9.59 

 It is interesting to compare the MMIFs and CMIFs with the UMIFs. The 

UMIF in Fig. 9.57 locates all five modes and outperforms the MMIF and CMIF 

plotted for the same FRF data set (case 2) which failed to locate one mode. Using 
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FRFs from a single input point results in an UMIF plot (Fig. 9.58) which locates all 

5 modes. The CoMIF with overlapped curves is shown in Fig. 9.59. It also locates 

all 5 modes. 

9.3.5  Test data example 1 

 Figures 9.60 and 9.61 show the CMIF and MMIF plots calculated based on 

FRFs from 12 locations (1 to 12 along the lower rim), and 3 force input locations 

(2, 3 and 50) measured on the fan case shown in Fig. 9.34. 

 

Fig. 9.60 

 

Fig. 9.61 

 They detect two pairs of quasi-repeated eigenfrequencies at 103.1 and 

177.9 Hz, other dominant modes at 45.75 and 75.7 Hz and some local modes. They 
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perform well for lightly damped structures, but the overlapped MMIF curves 

should be differently coloured to be distinguished from each other.  

 

Fig. 9.62 

 

Fig. 9.63 

 The single-curve MIF plots from Figs. 9.62 and 9.63 are calculated based 

on the same FRF data. They fail to indicate the existence of double modes, but 

show some local modes which appear also in the CMIF plot, on the curve 

corresponding to excitation at point 50. 

9.4  QR decomposition of the CFRF matrices 

 Applied to measured Frequency Response Functions, the pivoted 

orthogonal triangularization provides an alternative parsimonious description of 

frequency response data, being less expensive and more straightforward than the 

singular value decomposition. The main objective is to replace the measured set of 

FRFs by a reduced set of uncorrelated Q-Response Functions (QRFs) containing 

(almost) as much information as the original FRFs. The pivoted QLP 

decomposition [9.29] is an extension of the pivoted QR decomposition with better 

rank-revealing properties.  
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9.4.1  Pivoted QR factorization of the CFRF matrix 

 The pivoted QR factorization [9.30] decomposes the CFRF matrix into a 

sum of rank-one matrices,  iÂ . The column-permuted version of  A  is 

            




N

i

iR qRQΠAÂ

1

   r  i  




N

i

iÂ

1

. (9.58) 

 In (9.58),  Q  is an NN f   rectangular matrix with orthonormal 

columns,  iq ,  R  is upper triangular of order N, with rows  r  i , and  RΠ  is 

a permutation matrix. The diagonal entries of  R  are arranged in the descending 

order of their absolute values. Moreover, the diagonal of the  R  matrix contains 

the maximum entry for each row, (max jjr  r  j ) . 

 The columns of  Q  represent orthogonal unit directions in an N-

dimensional identification space, i.e. a new set of linearly independent frequency 

response functions, sometimes referred to as QRFs (Q Response Functions). 

 Algebraically, the Q-vectors,  kq , are particular linear combinations of 

the measured FRFs, i.e. of the columns  ja  of the CFRF matrix 

     




k

j

jjkk asq

1

.   (9.59) 

 In (9.59), the multiplying factors jks  are complex-valued elements of the 

upper triangular matrix     1
 RS  (for  A  full rank). 

 Geometrically, the transformation from FRFs to Q-vectors amounts to a 

rotation of the coordinate axes represented by the original FRFs, to a new 

coordinate system with mutually orthogonal axes, represented by the uncorrelated 

Q-vectors. Thus  1q  is along  1a ,  1q  and  2q  are coplanar with  1a  and 

 2a ,  3q  is orthogonal to  1q  and  2q  and so on. The Q-vectors form an 

orthonormal basis for the column space of the CFRF matrix. The coordinate system 

defined by the Q-vectors is different from the one defined by the left singular 

vectors of  A , that represent the principal axes of inertia of the data in the 

measurement space (directions with extremal autopower properties). 

 Each component matrix,  iÂ , is connected to one of the observable 

modes of vibration in the test data. It is expected that a componentwise analysis of 

the CFRF matrix will yield the system modal characteristics. 



9. FREQUENCY RESPONSE ANALYSIS  149 

 Because the Q-vectors have unit length, the amplitude information is 

contained in the  R  matrix. Generally,    j
H
iij aqr   if ji  , and 0ijr  if 

ji  . The j-th column of  R  contains the components of  ja  along the 

directions  1q  to  jq , i.e.:    j
H

aq 1
,    j

H
aq 2

,….,    j
H
j aq . The 

diagonal entries of  R  are projections of the column from  Â onto the direction 

from  Q . 

 The non-zero columns in each matrix  iÂ represent the projection of the 

columns  ja   Nij :  onto the direction of  iq  (i.e. the product of the 

column  ia , for Nji : , with the projection matrix    H
ii qq ). 

 If   NNA r rank , one can write 
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 (9.60) 

 The leading block  11R  is upper triangular and non-singular. In order to 

determine the rank rN  of the matrix  A , one has to carry out correctly the 

truncation of  R , setting   .R 022   Determination of rN  consists in deciding 

which is the first negligible entry down the diagonal of  R . The magnitude of an 

element jjr  can be considered as an indicator for the linear independence of the 

previous columns of  A .  

 Practically, rN  is determined by tracking the changes in magnitude of the 

diagonal elements of  R . Using the plot of the ratio of successive diagonal entries 

of  R , the rank of  R , hence of  A , is set to the index of the diagonal entry 

for which the ratio is a minimum. 

 Partitioning  

        21 QQQ  , 

            rr NNN   

the column permuted version of  A  becomes 

             12111   RRQΠAA
~

R  .  (9.61) 
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9.4.2  Pivoted QLP decomposition of the CFRF matrix 

 It has been found that diagrams of the diagonal entries jjr  of   R  are not 

entirely reliable for detecting the rank rN . The solution is a subsequent processing 

of the pivoted QR decomposition that yields the so-called “pivoted QLP 

decomposition”, which has better rank revealing properties [9.29]. 

 The algorithm of the pivoted QLP decomposition consists of two 

applications of the pivoted QR decomposition, first to the matrix  A  as in (9.58) 

          RQA R  , 

then to the conjugate transpose of the upper triangular matrix  R  

         H
L

H
LPΠR    ,   (9.62) 

where  P , of order N , has orthonormal columns and  L , of order N , is lower 

triangular (hence  H
L  is upper triangular). The pivots  RΠ  and  LΠ  are 

permutations to order the diagonal elements of  R  and  H
L , respectively, in the 

descending order of their absolute value.  

 Substituting        H
L PLΠR      into        H

RRQA  , one 

obtains  

           H
P̂LQ̂A    ,    (9.63) 

where  

       LΠQQ̂       and      PΠP̂ R   .   (9.64) 

 This is a pivoted orthogonal triangularization of  A , of the form 

   A  = (orthogonal) (lower triangular) (orthogonal), 

which is cheap to compute and tends to isolate independent columns of  A . 

 The diagram of the diagonal entries jj  of  L  versus their index 

resembles quite well the plot of singular values of  A . In comparison with the 

diagonal entries of  R , the jj  values track the singular values with remarkable 

fidelity, having better rank-revealing capability. 

 If   rNA rank  and matrices  P̂  and  Q̂ are partitioned accordingly  
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             21 P̂P̂P̂PΠR  ,  (9.65) 

            rr NNN   

             21 Q̂Q̂Q̂ΠQ L  ,  (9.66) 

            rr NNN   

then the pivoted QLP decomposition can be written in the partitioned form 
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 ,  (9.67) 

where  11L is of order rN . 

 The full-rank approximation of  A , of rank rN , is 

          H
P̂LQ̂A

~
1111    .   (9.68) 

 In general, the pivoting mixes up the columns of  Q so that  1Q̂ cannot 

be associated with a set of columns of  A . 

 For        RQAÂ R    full rank, if     1
 RS , the columns of 

 Q  are 

      



k

j
jjkk asq

1

,    (9.69) 

where  ja  are the columns of  Â . 

 The L-values tend to track the singular values of  A , so they can be used 

to reveal gaps in the latter. If the singular values of  A  have a gap at 
rN , the 

diagonal entries of  L  will generally exhibit a well-marked gap at ℓ
rr NN

. 

Practically, rN  is determined by tracking the variation in magnitude of the L-

values. Plotting the ratio of the magnitudes of successive L-values, the rank of 

 L , hence of  A , is set to the index of the diagonal entry for which this ratio is a 

minimum. 

 The pivoted QLP algorithm performs also better than the pivoted QR 

decomposition, where the associated R-values (diagonal entries of  R ) tend to 

underestimate the large singular values and overestimate the small ones. 
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9.4.3  The QCoMIF 

 For each component  iÂ of the CFRF matrix, the diagonal elements of 

the orthogonal projector onto the null space of  H

iÂ  exhibit minima at the natural 

frequencies. 

 The Q-vector componentwise mode indicator function (QCoMIF) is 

defined [9.31] by vectors of the form: 

          






 


iiNi ÂÂIQCoMIF
f

  diag ,  (9.70, a) 

          H
iiNi qqIQCoMIF

f
   diag ,  (9.70, b) 

where 


 denotes the pseudoinverse and  
fNI is the identity matrix of order fN . 

It can be computed as the difference between a column vector of ones and the 

Hadamard product of the Q-vectors 

           iii qqQCoMIF 1 .  (9.71) 

 In (9.71) the star superscript denotes the complex conjugate and   denotes 

element-by-element vector product. 

 

Fig. 9.64 
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 In the QCoMIF plot, the number of curves is equal to the estimated 

effective rank of the CFRF matrix, i.e. to the truncated number of its rank-one 

components. Each curve has local minima at the natural frequencies, with the 

deepest trough at the natural frequency of the corresponding dominant mode.  

 Visual inspection of QCoMIF curves reveals the number of modes active 

in a given frequency band and the dominant mode in each QCoMIF curve. The 

componentwise analysis allows a better understanding of the contribution of each 

mode to the dynamics of the system. 

 For noisy data and for structures with high modal density, an overlay of the 

QCoMIF curves becomes hard to interpret, so that a single-curve mode indicator 

function has been developed. 

 The QCoMIF shown in Fig. 9.64 is computed for the 15-DOF system, 

using noise free FRFs for excitation at points 3 and 15, and response at points 1, 10 

and 15. The plot is for frequencies in the range 0 – 100 Hz. The deepest trough in 

each subplot locates a damped natural frequency. 

9.4.4  The QRMIF 

 The QR Mode Indicator Function (QRMIF) is an aggregate indicator, 

defined [9.31] as: 

         

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
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
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H
ii qqÂÂ

1

 diag diag QRMIF , (9.72) 

where    H
ii qq  is the projection matrix onto the direction of  iq  and the sum 

extends over a number of Q-vectors equal to the estimated rank of  A . 

 Different QRMIF curves can be plotted for different values of rN . From 

equation (9.72) it is seen that the QRMIF is an aggregate of vectors of the form 

              









 ii
H
iiiii qqqqÂÂQRMIF   diag diag . (9.73) 

 Note that 

               1  trace rank 
 H

ii
H
ii

F
ii qqqqÂÂ . (9.74) 

 It comes out that the QRMIF is an AMIF calculated using a different set of 

orthogonal vectors. Similarly, the QCoMIF is a CoMIF based on Q-vectors instead 

of left singular vectors [9.32]. 
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Fig. 9.65 

 The QRMIF shown in Fig. 9.65 is computed for the 15-DOF system, using 

noise free FRFs for excitation at points 3 and 15, and response at points 1, 10 and 

15. The plot is for frequencies in the range 0 – 100 Hz.  

9.4.5  Test data example 2 

 The experimental data used in this example have been obtained for the 

GARTEUR SM-AG-19 testbed, designed and manufactured by ONERA, and used 

as a benchmark by the COST F3 working group on model updating [9.33]. 

 
Fig. 9.66 

 The testbed represents a typical aircraft design with fuselage, wings and 

tail. Realistic damping levels are achieved by the application of a viscoelastic tape 

bonded to the upper surface of the wings and covered by a thin aluminium 

constraining layer. The overall dimensions of the testbed are: m2  wingspan and 
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m51.  fuselage. The locations and directions of the 24 measurement degrees of 

freedom are shown in Fig. 9.66. 

 The experimental data-base, measured for the structure modified by a mass 

added to the tail (referred to as MOD1), using single point hammer excitation at the 

right wing tip, consists of 24 complex valued inertance FRFs. They span a 

frequency range from about 0 to 100 Hz, with 0.125 Hz frequency resolution, for 

which a CFRF matrix of size 24801  has been constructed. 

 

Fig. 9.67 

 

Fig. 9.68 

 By performing a pivoted QR decomposition of the CFRF matrix, the 

diagonal values of the  R  matrix, referred to as R-values, are indexed in 

descending order. The upper part of Fig. 9.67 is a plot of magnitudes of the R-

values versus their index, normalized to the first one. There is no sudden drop in 
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the curve to estimate an effective rank of the CFRF matrix. The lower plot shows 

the ratio of successive R-values. Again there is no distinct trough. 

 From the pivoted QLP decomposition of the CFRF matrix, the diagonal 

entries of the  L  matrix, referred to as L-values, are computed and plotted in Fig. 

9.68. The distinct minimum in the lower diagram indicates a rank 14rN .  

 

Fig. 9.69 

 For comparison, the plot of the singular values of the CFRF matrix is 

presented in Fig. 9.69. The lower plot is an overlaid of the curves giving the 

singular value ratio (solid line) and L-value ratio (broken line).  The L-values track 

the singular values remarkably well. 

 

Fig. 9.70 
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 The first 14 Q-vectors are shown in Fig. 9.70 and the overlaid QCoMIF 

curves are presented in Fig. 9.71. 

 

Fig. 9.71 

 The individual QCoMIF curves are displayed in Fig. 9.72, revealing at 

least eleven modes between 5 and 80 Hz. Subplots correspond to separate 

QCoMIFs with the index shown on the left. Each detected mode is marked by a 

local minimum at the associated frequency. The deepest minimum indicates the 

dominant mode.  

 

Fig. 9.72 
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 The aggregate QRMIF and its complement 1-QRMIF are shown in Fig. 

9.73, computed for 14rN . For comparison, the MIF1 and MIF2 plots are 

presented in Fig. 9.74. Both fail locating mode 7 at about 49 Hz and mode 4 at 35 

Hz. On the contrary, mode 7 is clearly indicated in the QCoMIF overlay in Fig. 

9.71 and in both QRMIF and 1-QRMIF plots from Fig. 9.73. Mode 4 at 35 Hz can 

also be located in Fig. 9.71 by a small trough overlaid on the deeper next mode 

trough at 35.5 Hz. 

 

Fig. 9.73 

 

Fig. 9.74 
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 Figure 9.75 shows the overlaid CoMIF curves. The plot resembles the 

QCoMIF presented in Fig. 9.71.  

 

Fig. 9.75 

 The individual CoMIF curves are displayed in Fig. 9.76.  

 

Fig. 9.76 
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 Table 9.3 lists the description of the modes, their natural frequencies and 

damping ratios determined by SDOF circle-fit analysis of the QRF diagrams 

around the dominant resonance. 

Table 9.3.  Eigenfrequencies and damping ratios for MOD1 

 

Mode 

 

Natural frequency, 

Hz 

 

Damping ratio, 

% 

 

Description 

1 6.55 2.52 2N wing bending 

2 13.95 1.85 Fuselage rotation 

3 32.40 0.97 3N wing bending 

4 35.17 0.80 Symmetric wing torsion 

5 35.54 1.58 Skewsymmetric wing torsion 

6 38.17 0.49 Tail torsion 

7 48.78 0.44 In-plane wing vs. fuselage 

8 49.92 1.97 4N wing bending 

9 56.46 0.25 Symmetric in-plane bending 

10 58.25 1.73 Fuselage bending 

11 78.59 0.97 5N wing bending 

 

 

 An example of circle fit modal analysis is illustrated in Fig. 9.77, a, using 

the Nyquist plot of the highest peak from Fig. 9.77, b, which is a diagram of the 

first Q-vector versus frequency. The almost circular shape of the plot in the 

neighborhood of resonance indicates good mode isolation for single degree of 

freedom analysis.  

  
a b 

Fig. 9.77 
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9.4.6  Concluding remarks 

 Mode indicator functions locate the observable modes in the test data and 

their natural frequencies, sometimes used together with interference diagrams and 

singular value ratio plots. Their performance is determined by the selection of input 

and output locations for the adequate definition of all modes of interest. 

 Eigenvalue based MIFs and the CMIF use rectangular FRF matrices 

calculated in turn at each excitation frequency. Their plots have as many curves as 

the number of references. The number of input points should be equal to the 

multiplicity of modal frequencies. 

 Other MIFs do the simultaneous analysis of all FRF information organized 

in a compound FRF matrix. They have a different physical basis and outperform 

the eigenvalue based MIFs developed to locate frequencies where the response is 

closest to the monophase condition. 

 The left singular vectors (U-vectors) or the Q-vectors obtained from the 

pivoted QLP decomposition of the CFRF matrix contain the frequency information 

and are used to construct MIFs. They are based on projections onto an orthogonal 

base of the subspace of measured FRFs. These orthogonal response functions are 

calculated as linear combinations of the measured FRFs and represent a response 

dominated by a single mode with a major contribution to the dynamics of the test 

structure in the given frequency band.  

 The number of curves in a CoMIF or QCoMIF plot is equal to the effective 

rank of the CFRF matrix. If this is lower than the number of response coordinates, 

a single point excitation can locate even double modes. The condition to use as 

many input points as the multiplicity of modal frequencies is no more imposed. 

They have been used with good results for complex structures with high modal 

density. 
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10. 
STRUCTURAL PARAMETER 

IDENTIFICATION 

In this chapter a brief description is presented of approaches to build 

mathematical models using test data, to assist in the analysis of structures and to 

help in determining responses to loads and the effects of modifications. 

The experimental modal analysis, also called modal testing, is such a 

procedure. Its aim is the determination of a structure’s vibration properties, 

described in terms of its modes of vibration, from test data. The following 

presentation is limited to the extraction of system model’s modal parameters from 

measured frequency response data under controled excitation, which is applied in 

most practical cases. 

10.1  Models of a vibrating structure 

Some of the major reasons for structural dynamic testing are [10.1]: 

– to obtain a description of a structure’s properties for comparison with 

values predicted by a theoretical model, perhaps in order to refine that model; 

– to obtain a mathematical description of one particular component which 

forms part of a complete assembled structure and which may not be amenable to 

theoretical analysis, in order that its contribution to the vibration of the assembly 

may be fully accounted for in an analysis of the complete structure; 

– to develop a mathematical model of a test structure or system which can 

then be used to predict, for example, a) the effects of modifications to the structure; 

b) the response of the structure to various excitation conditions, and c) the forces 

which are causing a machine or system to vibrate with an observed response. 

In all cases, the aim is to construct a mathematical model from test data, 

which is capable of describing the observed behavior of the test structure. 
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Conventionally, there are three types of mathematical models: a) spatial 

(physical) models; b) modal models, and c) response models (Fig.10.1). Each of 

these is capable of describing the required structural dynamic behavior, but each 

formulating the model in a different way, based on different fundamental features 

[10.1]. 

 

Fig. 10.1 

The spatial model describes the distribution in space of the essential 

physical features of the structure – its mass or inertia, its stiffness and its damping 

properties. It is defined by the mass, stiffness and damping elements or matrices 

which are used in describing equations of motion for the system. 

In a finite element or lumped parameter representation of a structure, the 

quantities which are obtained directly from the structure geometry and material 

properties are ‘intuitive’. The values of mass, stiffness and damping elements 

depend on the specific formulation of the analytical model and cannot be 

measured. For instance, the element ijk  of the stiffness matrix, defined as the 

internal force at coordinate i due to a unit displacement at coordinate j when all 

coordinates except j are constrained from motion, is not directly measurable. 

The modal model comprises the natural frequencies, modal damping 

ratios and the mode shapes. 

The response model consists of response functions (usually, but not 

exclusively FRFs) that relate the input/output relationships for all the degrees of 

freedom of the structure. The typical individual FRF from which this model is built 

is  jkH  and is defined as the harmonic response in DOF j due to a unit harmonic 

excitation applied in DOF k at frequency  . The response functions are non-

parametric descriptors of the structural dynamic response, defined by dynamic 

influence coefficients (flexibilities) which are observable or measurable 

parameters. Their values are independent of the formulation of the analytical 

model. 

Because modal parameters conform to the response characteristics, they 

could also be considered as measurable. Thus, one cannot measure the parameters 

that can be modeled and one cannot directly model what can be measured [10.2]. 
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In Fig. 10.1, the theoretical analysis ‘route’ to vibration analysis is from 

the left to the right. Starting from the system’s equations of motion written in terms 

of the mass, stiffness and damping matrices, the scope of the theoretical modal 

analysis is the prediction of the structure’s modes of vibration. Prediction of 

response characteristics is usually made using the modal properties already 

obtained, as shown in Chapter 7. 

The experimental analysis ‘route’ is from the right to the left. Given the 

actual structure, what can be measured directly is its response to a particular 

excitation – equivalent to the last part of the theoretical analysis procedure. The 

modal properties have to be extracted from the response characteristics which are 

measurable quantities, and this process is defined as modal testing or experimental 

modal analysis. Spatial properties can be further obtained either directly from 

response functions or from knowledge of all the modal properties. But this process 

encounters several difficulties due to frequency and spatial truncations.  

Thus the experimental ‘route’ appears as the reverse of the theoretical one. 

Though comparisons between experiment and theory could be made 

using any of the three kinds of models, they are usually made using the modal 

properties. This chapter is devoted to the extraction of modal parameters from FRF 

measurement data. 

10.2  Single-mode parameter extraction methods 

There exist a number of parameter identification methods based on the 

assumption that in the vicinity of a resonance the total response is dominated by the 

contribution of the mode whose natural frequency is closest. A detailed 

presentation is given in [10.3]. In the following, some of the most frequently used 

methods are presented, based on measured FRFs. SDOF techniques perform an 

independent fit of each resonance peak (or loop), one mode at a time. They are 

utilized for systems with low modal density and light damping, in troubleshooting 

applications or in the second stage of MDOF fitting processes for determining 

mode shape coefficients. 

10.2.1  Analysis of receptance data  

FRF receptance data are conveniently analyzed using a hysteretic 

damping model which yields circular Nyquist plots for SDOF systems. 

10.2.1.1  Peak-amplitude method 

The ‘peak-amplitude’ or ‘peak-picking’ method requires the 

measurement of only the response amplitude (not also the phase) as a function of 



168                                                                                           MECHANICAL VIBRATIONS 

frequency. It works adequately for structures whose FRFs exhibit well-separated 

modes. These should be neither so lightly damped that accurate measurements at 

resonance are difficult to be obtained, nor so heavily damped that the response at a 

resonance is strongly influenced by more than one mode. 

The steps in this simple, single mode approach, based on the analysis of a 

basic single-degree-of-freedom system, as described in Sections 2.4.4 and 2.4.7, 

are the following: 

1 – individual resonance peaks are detected on the FRF plot of magnitude 

versus frequency (Fig. 10.2, a) and the frequency of the maximum response is 

taken as the natural frequency of that mode, r ; 

2 – the maximum value of the FRF is noted, res , and the frequencies for 

a response level of   resR 1  are determined, if possible for several values of R. 

The two points thus identified, RB  and RC , have frequencies R1  and R2 , 

respectively (Fig. 10.2, b); 

  
a b 

Fig. 10.2 

3 – assuming hysteretic damping, the loss factor of the mode in question 

is given by [10.4] 
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which, for lightly-damped systems, becomes [10.5] 
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 For 2R , RB  and RC  are the ‘half-power points’ B  and C , of 

frequencies (see Section 2.4.4) 

rr, g121       (10.3) 

and the hysteretic damping factor is [10.6] 
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 For light damping equation (10.4) becomes 

r

rg


 12 
 .     (10.5) 

4 – the modal constant of the mode being analyzed can be obtained 

assuming that the total response in this resonant region is attributed to a single term 

in the general FRF series (equation (7.129)) 

2
rr

r
res

g

A


  , 

or 
2
rrresr gA      (10.6) 

which is proportional to the inverse of the modal mass rM . 

 It is obvious that only real modal constants – and that means real modes, or 

proportionally damped structures – can be deduced by this method. 

 Also, it is clear that the estimates of both damping and modal constant 

depend heavily on the accuracy of the maximum FRF value, res . This quantity 

cannot be measured with great accuracy due to the contribution of the neighboring 

modes to the total response at the resonance of the mode being analyzed. 

10.2.1.2  Circle-fit method 

The ‘circle-fit’ method requires the measurement of both the response 

amplitude and phase as a function of frequency, or equivalently of the real (in-

phase, coincident) and imaginary (in-quadrature) components. It works adequately 

for structures whose FRFs exhibit well separated modes, to render the assumptions 

of the SDOF approach to be applicable, and for proportional damping, i.e. no 

damping coupling between the normal modes. 

 As mentioned, a basic assumption is that in the neighborhood of a 

resonance the response of a MDOF system is dominated by a single mode. 

Algebraically, this means that the magnitude of the FRF is effectively controlled by 

one of the terms in the series (7.129), namely the one relating to the mode whose 

resonance is being observed. 

 Equation (7.129) can be rewritten as 
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 The circle-fit procedure is based on the assumption that at frequencies very 

close to r , the second term in (10.7) is approximately independent of frequency 

and the expression for the receptance can be written as 
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,  (10.8) 

where .constBr   and the complex quantity reCr
i

 represents an effective modal 

flexibility. 

 Now, consider the Nyquist plot of this receptance FRF, building up the 

total plot by considering one element of the expression (10.8) at a time. 

 First, consider just the frequency-dependent term which results in a simple 

upright circle of diameter 21 rrg   (Fig. 10.3, a), as shown in Section 2.4.7. 

  
a b 

  
c d 

Fig. 10.3 
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 Next, the effect of multiplying this term by the complex constant reCr
i

 

is to rotate the circle through r , and to scale its diameter by rC  (Fig. 10.3, b) 

[10.7]. Then, by adding the complex constant rB , the circle is displaced bodily by 

an amount rB  (Fig. 10.3, c).  

 Finally, we can deduce the general case, as shown in Fig. 10.3, d. The 

Nyquist plot of the complete FRF consists of loops. In the vicinity of a resonance, 

each loop can be approximated by a modal circle. Each modal circle is the scaled, 

rotated and displaced version of the essential circle defining the response of a 

SDOF system. 

 Circle fit 

 The circle fit can be most accurately obtained using a least squares circular 

curve fitting technique as follows. The general equation of a circle is 

   022  cybxayx . 

 Let the above equation be equal to an error function,  , then square the 

error and sum it over the fN  excitation frequencies 
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 Now differentiate with respect to a, b, and c, and set the result to zero. 

Dropping the index  f  
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 In matrix form, the above equations become 
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 Therefore, the parameters a, b, and c can be determined from the above set 

of equations. The radius and center of the modal circle are easily determined from 

a, b, and c as follows: 

   axcenter
2

1
 ,  bycenter

2

1
 , 

   c
ba

radius 
44

22

. 

 It is useful to present the properties of the modal circle used in the 

extraction of modal parameters. The basic function with which we are dealing is 

   
222 i
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
 .    (10.9) 

 Location of resonance frequency 

 A plot of the quantity   in the Argand plane is given in Fig. 10.4, a. The 

length of the arc on the curve is the radius times the angle subtended 
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a b 
Fig. 10.4 

 The derivative with respect to 22
r  is 
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 The rate of change of the arc length with respect to frequency (squared) 

attains a maximum value at resonance, where   is maximum. This property is the 

basis of a method for locating natural frequencies developed by Kennedy and 

Pancu in 1947 [10.8]. 

 If the system is excited by a harmonic force and   is plotted point by 

point in the Argand plane, at equal frequency increments  , then the arc length 

s  between two successive points is a maximum at resonance (Fig. 10.4, b). 

 Estimation of the damping factor 

 For determining the hysteretic damping factor, rg , we can use just three 

points on the circle: the resonant point M, one below it and one above it, as shown 

in Fig. 10.5.  

 

Fig. 10.5 

 Based on the circle geometry 
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from which we have [10.9] 
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or, if rg is small, 

   
































 


ba
r

ab
rg






2

1
tan

2

1
tan

2
. (10.13) 

 This is seen to reduce to the half power points formula (10.5) when 
090 ba  , but usually these have to be located by interpolation between the 

points actually measured, which is a source of error. 

 The formula (10.12) permits multiple estimates of the damping factor to be 

made, since there will generally be several points which could be used for a , and 

several others which can be used for b , the net effect being that a whole set of 

damping estimates are obtained, all of which should be identical. 

 If the level of damping is low and the natural frequencies are well spaced, 

each loop will be nearly circular in the immediate vicinity of a resonance, where 

the curve is swept out most rapidly with respect to the variation in  , though none 

of the loops will be a full circle.  

 Steps of SDOF circle-fit parameter identification 

 A single mode analysis can be carried out for each loop, with the following 

steps [10.1]: 

 a) identify those FRF points which lie close to a resonance (generally, 

those surrounding a local maximum in the modulus plot) and plot them in the 

Argand plane; 

 b) fit a circle through the selected points (Fig. 10.6, a); 

 c) by examination of the spacing of the points around the circle, plotted at 

equal frequency increments,  , locate the natural frequency within the small 

range covered, at the point where the circle radius is sweeping most rapidly with 

frequency (Fig. 10.6, b).  

This is achieved using Stirling’s interpolation formula [10.10]. Four 

successive points are selected, the pair most widely spaced (maximum chord 

length) and other two points, one at either side. If the chord length 

   22
yxz    (instead of the arc length) is plotted as a function of the mean 
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frequency,  , of each interval (which is not at the middle of the interval), then a 

quadratic which passes through the three ordinates (Fig. 10.6, c) is described by the 

equation 

   11
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 The first derivative 

    11
11 2

2d

d


 


 iii
ii zzzu

zz

u

z
 

cancels for 

   
 11

11

22 








iii

ii
max

zzz

zz
u  

so that the natural frequency is approximately 

    maxir u . 

 d) determine the damping factor from a measurement of the sweep rate of 

the radial vector (above) or from application of formula (10.13) (Fig. 10.6, d); 

  
a b 

  
c d 

Fig. 10.6 
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 e) determine the modal constant from the property that the diameter of the 

modal circle gives its modulus (multiplied by 2
rrg  ) and the angular rotation of 

the circle from the vertical gives its argument. 

 In the case of proportional damping, the modal constant is real, hence the 

circle is not rotated from the vertical and the diameter at resonance is parallel with 

the imaginary axis. The extent to which the modal circle is displaced from the 

origin (i.e. that the top of the diameter at resonance is away from the origin) is a 

measure of the sum contribution of all other modes of vibration. 

 Note that if viscous damping is assumed, then the modal damping ratio, 

r , would be equal to 2rg . The exact formulas are given in reference [10.3]. In 

fact, where 10.gr  , which covers virtually all practical cases, the response of a 

viscously damped system in the vicinity of resonance is virtually identical with that 

of an equivalent hysteretically damped system.  

 The approach described here for hysteretic damping can equally be applied 

to viscous damping, simply by using mobility data instead of receptances. In this 

case, the Nyquist diagrams are rotated by 
090  counterclockwise, but are otherwise 

very similar in appearance. 

Example 10.1 

 Consider the 11-DOF system with hysteretic damping of Fig. 9.19. Its 

physical parameters as well as the damped natural frequencies and hysteretic 

damping factors are given in Table 9.2. FRFs obtained from randomly ‘polluted’ 

mass, stiffness and damping data have been used in the numerical simulation study.  

  
a b 

Fig. 10.7 

 Driving point inertance curves are shown in Fig. 10.7, a for mass 1m  and 

in Fig. 10.7, b for mass 11m . Despite the symmetric location of these two masses, 

owing to the lower damping values in the left-hand side of the system, the FRF 
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curves from Fig. 10.7, a do not exhibit pairs of closely spaced peaks as expected. 

FRF curves determined for mass points located in the right-hand side of the system 

give more information. 

 

 

 
a b 

Fig. 10.8 

    

    

   
 

Fig. 10.9 
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 Figure 10.8, a shows the Nyquist plot of the drive-point inertance for mass 

9m . The diagrams of the real and imaginary components are given in Fig. 10.8, b. 

At least 9 peaks can be seen on the plot of the imaginary component.  

 The circle-fit method is used to illustrate a single FRF based SDOF modal 

analysis procedure carried out using the program MODENT [10.11]. For each loop 

of the Nyquist plot of Fig. 10.8, a, a circle is fitted to the data points, the maximum 

frequency spacing criterion is used to locate the resonance, and the modal damping 

is calculated from equation (10.13). Results of the analysis of the first eight modes 

are shown in Fig. 10.9. A comparison of ‘theoretical’ and simulated ‘experimental’ 

modal data is given in Table 10.1.  

Table 10.1.  Modal parameters of the 11-DOF system 

Mode 

No 

Theoretical data ‘Experimental’ data 

Frequency, 

Hz 

Damping 

Factor,% 

Frequency, 

Hz 

Damping 

Factor,% 

1 2.74 8.93 2.71 11.8 

2 2.95 9.05 3.00 11.54 

3 7.27 8.86 7.11 9.13 

4 7.78 9.12 7.85 6.72 

5 11.54 8.77 11.37 6.54 

6 12.08 9.20 12.73 5.26 

7 15.12 8.64 14.77 12.71 

8 15.51 9.34 15.78 9.32 

 

 The drawbacks of a single FRF analysis are obvious. Modal parameters 

extracted by SDOF modal analysis for a system with relatively close modes are not 

accurate. However, the circle-fit method can extract modal parameters where the 

peak amplitude method may fail. 

Example 10.2 

 The experimental data used in this example have been obtained for the 

GARTEUR SM-AG-19 testbed, as described in Section 9.4.5. It consists of 24 

complex valued inertance FRFs, measured using single point hammer excitation at 

24 arbitrarily selected locations (Fig. 10.10) and acceleration measured at the right 

wing tip. QRFs obtained from the pivoted QLP decomposition of the CFRF matrix, 

as explained in Section 9.4.5, have been used for modal parameter identification. 

 Table 10.2 lists the natural frequencies and damping ratios for the 

unmodified structure. The index of the QRF used for modal parameter 

identification in each case is given in column 2. 
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Table 10.2.  Natural frequencies and damping ratios of the UNMOD structure 

 

Mode 

 

QRF 

Natural  

frequency, 

Hz 

Damping  

ratio, 

% 

 

Description 

1 8 6.55 4.04 2N wing bending 

2 10 16.60 2.63 Fuselage rotation 

3 4 35.01 0.9 Antisymmetric wing torsion 

4 1 35.29 1.97 Symmetric wing torsion 

5 6 36.52 1.24 3N wing bending 

6 5 49.49 2.16 4N wing bending 

7 11 50.78 0.57 In-plane wing vs. fuselage 

8 9 56.42 0.45 Symmetric in-plane wing bending 

9 4 65.03 2.21 5N wing bending 

10 7 69.72 0.57 Tail torsion 

 

 Examples of circle fit parameter identification from QRF Nyquist plots are 

shown in Fig. 10.11. Because mode 4 is clearly marked by a minimum in the first 

subplot from the QCoMIF (Fig. 9.72), its modal parameters are determined from 

the diagrams of the first QRF. Indeed, the magnitude versus frequency plot (first 

row, first column) exhibits a prominent peak at about 35 Hz. The Nyquist plot for 

the frequencies in the neighbourhood of the resonance peak (first row, second 

column) is almost circular, indicating good mode isolation for single-degree-of-

freedom circle fit analysis. The natural frequency is located at maximum rate of 

change of arc length with frequency. The modal viscous damping value is 

calculated as the arithmetic mean of two values, one determined using the two 

measured points chosen next to resonance, indicated in figure, and the other 

determined using the next close points below and above resonance, using equation 

(10.13). 

 

Fig. 10.10 

 Mode 1 is clearly marked in the eighth subplot in Fig. 9.72, so that its 

modal parameters are determined using the eighth QRF (second row in Fig. 10.11). 

Analogously, mode 8 is analyzed based on the 9th QRF, while modal parameters of 

mode 10 are determined from the 7th QRF. In all cases, the decision on what QRF 

to choose for analysis is based on the inspection of the QCoMIF plot (Fig. 9.72). 
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Fig. 10.11 (from [10.12]) 
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10.2.1.3  Co-quad components method 

 Measurement of the real (in-phase) and imaginary (quadrature) 

components of the harmonic response and separate use of their diagrams had 

preceded [10.13] the use of Nyquist plots. These diagrams can also be used for 

modal parameter identification, especially for systems with proportional damping.  

  
a b 

Fig. 10.12 

 Resonances are located at the frequencies where I  has extreme values 

and R  has inflection points, or  dd R  is a maximum. Use of the diagram of the 

quadrature component is justified by the fact that I  peaks more sharply than the 

total response. The half-power points B and C correspond to extreme values of R  

(Fig. 10.12) and the difference (vertical distance) between their ordinates is a good 

measure for the modal response at resonance. Equation (10.4) can once again be 

used for evaluating the damping factor.  

 When the coupling of modes cannot be neglected, alternative formulae are 

[10.14] 
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where 1  and 2  are the frequencies of the points of local minimum and 

maximum in the diagram of the in-phase component. 
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10.2.1.4  Phase angle method 

 For the SDOF system, the variation of the phase angle with frequency is 

shown in Fig. 10.13, a. The “phase resonance” occurs at the frequency r  where 

090 . The half-power points B and C, defined by frequencies 1  and 2 , 

correspond to phase angles of 045  and 0135 , respectively; thus, the damping 

factor can be evaluated using equation (10.4). This will be affected somewhat by 

the coupling of the modes and the presence of motion in off-resonant modes. 

 

 
a b 

Fig. 10.13 

 For MDOF systems it is better to locate the resonance at the point at which 

the phase angle curve has an inflection point, 0dd 22   (Fig. 10.13, b). The 

damping factor can then be calculated from the slope of the tangent to the curve at 

that point [10.15] 
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 For a pure mode, therefore, the natural frequency may be calculated by the 

intersection of the phase-angle curve with the line 
090  (or 

0135 ), and 

the damping factor may then be calculated from the slope of the curve at this point. 

Thus it is only necessary to plot the phase-angle curve over a small frequency 

range around each resonance in order to obtain both pieces of information. 
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10.2.2  Analysis of mobility data 

 The hysteretic damping model is conveniently used with receptance- or 

inertance-type FRF data because the SDOF Nyquist plots are circles. Apparently, 

use of a linear viscous damping model would be beneficial with mobility-type FRF 

data, for which the SDOF Nyquist plots are circles. In the following, modal 

parameter identification methods based on measured mobility data are presented in 

some detail, to understand the approximations involved in their practical use. 

10.2.2.1  Skeleton method 

 The skeleton technique [10.16] is a direct spatial parameter identification 

method, different from those described above, in that the model derived is not 

based on the modal parameters of the structure. The method is best suited to lightly 

damped systems with relatively few degrees of freedom (typically, less than four), 

and can be summarized as consisting of the following steps [10.17]: 

 a) measuring a point mobility on the test structure; 

 b) deciding upon a suitable and plausible mathematical model for the 

system (i.e. a suitable configuration of masses and springs); 

 c) direct identification of the mass and stiffness parameters in the chosen 

model from the mass and stiffness lines which make up the skeleton of the 

measured curve. 

 The skeleton technique is based on the properties of the graph of mobility 

(i.e. velocity at constant force amplitude) against frequency. If the two rectangular 

coordinates are scaled logarithmically to a common scale-modulus, a straight line 

with a slope 1  implies constant inertance, i.e. a mass-like response, 

mM
m

1 , while a straight line with a slope 1  implies constant receptance 

(displacement), i.e. a spring-like response, kM
k

 . The cross-over frequency 

of a mass-line and a spring-line corresponds to an antiresonance, and the cross-

over frequency of a spring-line and a mass-line corresponds to a resonance. 

 For a free-free system, the very low frequency response is mass-like and 

the corresponding part of the drive-point mobility curve will follow a mass-line, 

which on log-log plot is a straight line of 1  slope. Extended down to the first 

antiresonant frequency, this constitutes the first ‘arm’ of the skeleton. At the first 

antiresonant frequency, the skeleton changes direction and follows a stiffness line, 

of 1  slope, being that which intersects the previous mass line at the antiresonant 

frequency. Then, at the first resonance frequency, the skeleton changes back to 

another mass line, followed at the second antiresonant frequency by a further 

reversal to a stiffness line. At very high frequencies the skeleton ends with a mass 

line, the mass at the driving point. 
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 Certain information regarding the damping of the system may also be 

deduced from an extension to the skeleton construction outlined above [10.16]. 

 The values of mass and stiffness corresponding to each arm of the skeleton 

can be related to the distribution of mass and stiffness in the structure. The lowest 

and highest arms provide direct information concerning the total mass of the 

structure and the mass of the element at the driving point, respectively. 

 

 
a b 

Fig. 10.14 

 An example of the method is illustrated in Fig. 10.14 where the drive-point 

mobility of an ungrounded three-mass system is shown alongside a suitable 

(though not unique) spatial model. 

 From the skeleton curve (Fig. 10.14, b) it is possible to deduce: two 

resonant frequencies, 1R  and 2R , two antiresonant frequencies, 1A  and 2A , 

three mass lines, 0m , 1m  and 2m , and two stiffness lines, 1k   and 2k .  

 For the model it is necessary to specify three mass elements, 1m , 2m  and 

3m , and two stiffness elements, 1k  and 2k . These five parameters may be 

calculated directly from the properties of the skeleton [10.3] as  
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 In fact, all skeleton links may be determined from one single arm plus all 

the resonant and antiresonant frequencies. A full description of the method together 

with tabulated formulae for the identification of a range of similar systems are 

given in [10.3] based on [10.16]. 
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Example 10.3 

 The skeleton technique has been applied to a free-free uniform beam, 

whose drive-point mobility can be readily calculated and compared with measured 

values. 

 The test beam, shown in Fig. 10.15, has length mm2610  and 

hexagonal cross section with mm50d , Young’s modulus GPa210E  and 

mass density 3mkg7850 . The cross section area is 

232 m1016528660  .d.A , and the second moment of area is 

474 m10753060  .d.I z . 

 
Fig. 10.15 

 The drive-point mobility is 
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where  2Y  is the dynamic deflection at the beam midpoint (6.42). 

 In Fig. 10.16, the theoretical drive-point mobility curve is drawn with 

broken line, and the measured curve with solid line. The lack of coincidence in the 

very low frequency range is due to the beam suspension by chords of finite 

stiffness which makes the rigid body response to influence the response near the 

first antiresonance. 

 Using the above presented skeleton procedure one obtains 

   kg04440 .m  , kg3171 .m  , kg2592 .m  , 

 Hz37221 .fA  , Hz171402 .fA  , Hz58351 .fR  , Hz31922 .fR  . 

 Equations (10.16) yield the following physical parameters 

   mN103265 5
1  .k , mN100766 6

2  .k , 

   kg96261 .m  , kg8372 .m  , kg2593 .m  , 
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of the associated lumped parameter model of Fig. 10.14, a.  

 

Fig. 10.16 (from [10.18]) 
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 It can be checked that the drive-point mobility curve of the equivalent 

system coincides with that of the beam over the frequency range up to the second 

resonant frequency. 

10.2.2.2  SDOF mobility data 

 For harmonic excitation   teFtf i
0  and steady-state response 

  teX
~

tx i , the velocity is   tt eX
~

et   ii
0 i vv . 

 The complex mobility is 
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or 

   
























1
i2

1

mk

M ,   (10.17, a) 
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 It can also be expressed as 
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where the in-phase and quadrature components are 
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and the magnitude and phase angle are given by 
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10.2.2.3  Peak amplitude method 

A plot of the magnitude of the complex mobility (10.21) as a function of 

frequency is shown in Fig. 10.17. Amplitude resonance occurs at mkn   

where the peak response is  
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11
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.    (10.23) 

The frequencies for a response level of   maxM1  are determined, if 

possible for several values of  . The two points thus identified, B  and C , have 

frequencies 1  and  2 , respectively: 
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Fig. 10.17 

The damping ratio is given by the exact formula [10.3] 
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which, substituting  21
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 For 2 , B  and C  are the ‘half-power points’ B  and C , of 

frequencies  
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and the damping ratio is given by the exact formula 
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 In log-log coordinates, the resonant curve from Fig. 10.17 becomes 

symmetrical. 

10.2.2.4  Circle-fit method 

 In the circle-fit method, each loop of the Nyquist plot of the mobility FRF 

is approximated by a circle in the vicinity of a resonance. 

 For a SDOF system with viscous damping, the Nyquist plot of the complex 

mobility is a circle (Fig. 10.18) of equation 
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. (10.30) 

  
  Fig. 10.18    Fig. 10.19 

 The center of the mobility circle in on the real axis, so that the diameter at 

resonance MO  is no more rotated as for hysteretic damping (Fig. 2.35, a). The 

half-power points lie at the ends of the perpendicular diameter CB . 
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 The arc length is 

   vd
2

1
d

c
s  , 

and the derivative with respect to   is 
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 The rate of change of the arc length with respect to frequency, 
d

ds
, is a 

maximum at the frequency 2121  n  which is less than the resonant 

frequency n . For 1 , the difference is negligible and the Kennedy and Pancu 

criterion can be used for the location of the natural frequency. 

 For determining the damping ratio,  , we can use three points on the 

circle: the resonant point M, one below it, P, and one above it, Q, as shown in Fig. 

10.19.  

 Using equation (10.22) we obtain 
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from which we have [10.3] 
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 If   QP , then QPn  2
 and equation (10.31) becomes 

   



 cot

2 n

PQ 
 .    (10.32) 

10.2.3  Base-excited systems 

 Base excited configurations are used in test rigs for determining the 

dynamic properties of anti-vibration mountings and materials used in vibration 

isolation. 

 Consider the base-excited mass–damped spring–mass system with 

hysteretic damping from Fig. 10.20. 
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 A harmonic force   teFtf i
0  is applied to the bottom mass. The steady-

state response of the two masses is   teX
~

tx i
11   and   teX

~
tx i

22  . The 

complex dimensionless displacement amplitudes are given by 
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 The relative displacement between the two masses is 
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and the motion transmissibility is 
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g
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where 
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       Fig. 10.20     Fig. 10.21 
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 Equations (10.33)-(10.35) are plotted in Fig. 10.21 for 20.g   and 2  

[10.19]. The frequency parameter along the polar plots is 2 . 

 Resonance occurs at 





12 
res , hence at the frequency  
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








21

11

mm
kres     (10.38) 

where a minimum of force produces a maximum of relative motion between the 

two masses. This occurs at point M on the diagram of  21 X
~

X
~
 , which is a circle. 

It can be located using the Kennedy and Pancu criterion, where the rate of change 

of the arc length (or phase angle) with frequency is a maximum. 

 On the diagrams of 1X
~

 and 2X
~

, the resonant frequency corresponds to the 

points where the quadrature component is a maximum. 

 At the half-power points B and C, the dimensionless frequencies are given 

by 

    g, 1
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so that the hysteretic damping factor is 
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Fig. 10.22 
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 Equation (10.36) is plotted in Fig. 10.22 for 20.g  . The frequency 

parameter along the polar plot is 2 . The Nyquist plot of the complex 

transmissibility IR TTT i  is a circle of equation 
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 Resonance occurs at 12 M , hence at the frequency 
2m

k
M   which 

can be located using the Kennedy and Pancu criterion. The diameter OM at 

resonance is inclined an angle g1tan   with respect to the negative imaginary 

semiaxis. At the ends of the diameter AB, perpendicular to OM, the half-power 

points have frequencies  

   gC,B 12  , 

so that the hysteretic damping factor can be calculated from 
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Fig. 10.23 

 If the damped spring from Fig. 10.20 is a test specimen from a material 

modeled by a complex stiffness  gkk i1 , the bottom mass has a harmonic 

motion   teXtx i
11   and the top mass has a motion      teXtx i

22 , lagging 

with an angle   the input displacement of the bottom mass, then the dynamic 

stiffness k and the equivalent hysteretic damping factor g are given by [10.20] 
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 If two identical accelerometers are installed on the two masses and their 

output signals are fed to the X and Y plates of an oscilloscope, an ellipse is traced 

on the screen (Fig. 10.23). The quantities 
OB

OC

X

X


2

1  and 
OB

OA
sin  can be 

determined using the elliptical-pattern measuring technique. 

10.3  Multiple-mode parameter extraction methods 

Multi-degree-of-freedom (MDOF) parameter identification methods 

perform a simultaneous fit of several resonance peaks (or loops), often for curves 

from all response stations, but with the same excitation location (single reference 

multi-curve algorithms). These techniques are utilized for systems with high modal 

density (overlapping of half-power bandwidths of two adjacent modes) or high 

damping (resonance loops or peaks not visible in the FRF plots), when the modes 

are not separated, so that their shapes cannot be determined from the response 

measured at resonance. Sometimes, modal frequencies and modal damping factors 

are first estimated using SDOF techniques, and special separation methods are then 

used to determine the individual modal responses. In the following, only single 

point excitation techniques are presented, based on measured FRFs. 

10.3.1  Phase-separation method 

 With the assumption of proportional hysteretic damping, the vector of 

complex displacement amplitudes is (7.66) 
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where 
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r
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K

D
g  ,  N,...,,r 21   (10.44) 

are the modal structural damping factors. 
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 The steady-state complex displacement at coordinate j, produced by a 

harmonic force applied at coordinate  , is given by 
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so that the complex transfer receptance is  

     rr

N

r
rj

j
IjRjj ba

f̂

x~

ii
1

 





 , (10.46) 
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 The quadrature component in all coordinates, due to a force applied at 

coordinate  , is  
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where 
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 This can be evaluated at fN  excitation frequencies ,,,,
fN 21  and 

written under the form 

       bI   ,    (10.50) 

where 
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 Equation (10.50) has the form [10.21] 
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     (10.52) 

 If NN f   and the matrix  b  is non-singular, equation (10.50) can be 

solved for the normal modes 

        1
 bI ,    (10.53) 

where starting estimates of rg  and r  are used. 

 This yields terms of the form 
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or, if the normal modes are normalized to unit modal mass, 1rM , of the form 
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  .     (10.47, b) 

 It will be noted that this method of separation is not tenable when two 

modes have coincident or very nearly coincident natural frequencies and have 

similar damping factors. 
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 Although all measured modes could be used in equation (10.53), it is only 

necessary to include those modes which are sufficiently close to cause modal 

interaction in the measured quadrature response. It will seldom be necessary to 

include more than four modes in the equation. Thus, the number of estimated 

modes is smaller than the number of structural degrees of freedom and much 

smaller then the number of degrees of freedom of the identification model.  

 When the number of modal parameters is smaller than the number of 

experimental data available, no exact solution to the above equation can be found. 

Optimal values of the modal parameters are found minimizing the square error 

between calculated and experimental data (least squares method). When the model 

order is larger than the system order, there are more determined modes than 

structural modes, the remainder being called computational or noise modes. The 

latter are readily identified as they cannot be repeatedly obtained by a choice of a 

different set of effective DOFs. To sort out the physically meaningful modes, the 

concept of modal confidence factor was introduced [10.22]. 

 Multi-mode curve fitting procedures using single point excitation require at 

least one column of the FRF matrix to completely define the mode shapes. But 

analyzing one FRF curve at a time, different estimates of the natural frequency and 

modal damping are derived for each mode, though these are ‘global’ properties. 

 In many cases it is not possible to identify the complete modal vector due 

to near-zero modal coefficients obtained as a result of the poor choice of excitation 

and response points. The solution is to change their location. Improved frequency 

and damping estimates can be extracted from multiple single-point or multi-point 

surveys. When more than one column of the FRF matrix is available (redundant 

data) multiple estimates for the modal parameters are obtained, which are generally 

not consistent. Inconsistencies involve frequency shifts, non-reciprocity and non-

stationarity in the data. These errors in the measured FRFs are partly due to 

structural nonlinearities, to environmental effects and to exciter and transducer 

attachment. 

10.3.2  Residues 

 The effect of out-of-band modes can be compensated using either 

additional residual terms in the FRF mathematical expressions or extra modes in 

the identification model.  

 The expression of the receptance FRF (10.45) can be written 
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where the quantities R
jK   and R

jM   are the residual stiffness and residual mass for 

the considered FRF in the frequency range of the measurements. 

 

Fig. 10.24 (from [10.23]) 

 This equation indicates that the response in a certain frequency range can 

be approximately described in terms of the “inertia restraint” of the lower modes of 

vibration, the modes of vibration which are resonant in that frequency range and 

the “residual flexibility” of the higher frequency modes. 

 It should be noticed that residual terms are not global modal properties. It 

is not possible to predict the residues of a direct FRF from those of another direct 

FRF and the cross FRF corresponding to the pair of points where direct FRFs are 

measured. Moreover, determination on the number of DOFs in the data is critical 

for most algorithms. 
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10.3.3  Modal separation by least squares curve fit 

 The modal parameters can be extracted by least squares curve fitting 

equation (10.54) to the receptance FRF data measured at fN  excitation 

frequencies 
fN,,,  21  [10.24]. 

 Setting up an equation at each excitation frequency, the following set of 

equations is obtained 
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or 

        T . 

 It is assumed that estimates of the values rg  and r  are known so that 

 T  can be calculated. In the case when there are more FRF values measured in 

   than parameters of interest in   , an error function is introduced 

          Te   

and the sum of the error squared can be written as 

                  TTee
TT

 .  (10.55) 
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 In equation (10.55) it is implied that the total error should be dependent on 

the magnitude squared of the measured FRF data. In general, this is not wanted, 

since the FRF data near the antiresonances is frequently of just as much or more 

importance that the data taken near the resonances. Therefore, it is recommended to 

introduce a weighting function into equation (10.55) to modify the importance of 

the data. Thus, define a diagonal matrix  W  having elements proportional to the 

significance of the data measured at that frequency (i.e. often taken as the inverse 

of the magnitude squared): 

                     TWTeWe
TT

 . 

 The product     eWe
T

 is minimized by taking its derivative with 

respect to the vector    and setting the result equal to zero 

  
      

 
           


TTWT

eWe T
T





20 . 

 This yields the “weighted” least squares solution 

                 WTTWT
TT 1

 .  (10.56) 

 Using estimates of the elements of   , the total error can be evaluated. 

Each value of the natural frequency can be changed successively to determine the 

minimum error and then each damping coefficient can be changed to determine the 

damping factor for minimum error. After new values for the natural frequencies 

and damping factors are found, equation (10.56) can be used again and the 

procedure repeated as many times as necessary to reduce the error to an acceptable 

level [10.23]. The goodness-of-fit check is made synthesizing an FRF using the 

estimated values of the modal parameters and overlaying this function on the 

original test data. 

10.3.4  Elimination of the modal matrix 

 A method which is not based on initial estimates of rg  and r  starts with 

the elimination of the matrix containing the mode shape coefficients [10.25]. It is 

assumed that the number of response measurement points, oN , is larger the 

number of modes of vibration, n. 

 Using equations (10.47), the in-phase component in all coordinates, due to 

a force applied at coordinate  , can be written as  

             aar

n

r

rR 
1

 ,  (10.57) 



10. STRUCTURAL PARAMETER IDENTIFICATION 201 

where 

       T

RNRjRRR    21 , 

            T

Naaaa  21 ,  (10.58) 

and    is given by (10.49). 

 Evaluated at fN  excitation frequencies ,,,,
fN 21  this can be 

written under the form 

       aR   ,    (10.59) 

where 

             
fNRRRR   21 , 

             
fNaaaa  21 .  (10.60) 

 Observe that in equations (10.50) and (10.59)  R ,  I  and    

are rectangular NNo   matrices, while  a  and  b  are square NN   matrices. 

 From equation (10.50)  

        1
 bI     (10.61) 

which substituted in (10.59) yields 

         abIR
1

      (10.62) 

and 

         abRI
1   ,   (10.63) 

where 

          TII
T

II  
1

 .  (10.64) 

 Equation (10.63) can be written 

       cba  ,     (10.65) 

where the matrix 

       RIc        (10.66) 

has measured elements. 
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 As 

         frfrfr bba   12 ,  (10.67) 

and from (10.65)  

       ef

N

e
erfr cba 




1

 ,   (10.68) 

where efc  is a generic element of the matrix  c ,  fra   can be eliminated from 

equations (10.67) and (10.68). This results in n sets of n equations in  frb  , 

hence 2n  equations of the form 

        01

2

1















 



ef

N

e

erfrfr cbbb  ,  n,...,f,r 1  (10.69) 

wherefrom the 2n  elements of the matrix  b  can be determined. 

 Denoting 

    
r

r
r

g

2

2

1








      (10.70) 

we can write 

    
  1

1
2 





r

rb ,    (10.71) 

hence 

    
 











r
r

b

1
1 .   (10.72) 

 Evaluating (10.70) at two excitation frequencies, e  and f , the natural 

frequencies and modal damping factors are obtained as follows 

   
   freerf

ef
rg





22

22




 ,   (10.73) 

   
   
   frer

freerf
r











22
2 .   (10.74) 

 Using the above values, the matrix  b  is calculated and, if it is non-

singular, equation (10.61) gives the matrix    with elements of the form (10.47). 

The mode shape coefficients are determined as 
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   jjrrrrj gu  , 
jjr

rj
rjr uu


 
  . (10.75) 

 The main drawback of this method is the arbitrary selection of the 

frequencies e  and f  in (10.73) and (10.74). 

10.3.5  Multipoint excitation methods 

 Natural frequencies and modal damping factors are global properties, i.e. 

intrinsic structural properties, independent of the input or response measurement 

locations, or both. Inclusion of data from multiple reference locations in the 

estimation of global properties dictates the need for consistency between 

measurement data. This goal is achieved by multipoint excitation and simultaneous 

recording of various FRFs.  

 Single-input multi-output (SIMO) methods can calculate global estimates 

only for natural frequencies and damping values. Multi-input multi-output (MIMO) 

methods can also calculate consistent modal vectors. Advantage is taken of the fact 

that mode shapes are independent of the input location, whereas modal 

participation factors are independent of the response location. Additionally, MIMO 

methods can handle symmetrical structures or structures with very high modal 

density, for which it is necessary to have data from as many independent exciter 

locations as the (pseudo-) multiplicity of the repeated roots. 

 Multiple reference simultaneous algorithms perform an ensemble MDOF 

fit of FRF curves from all response locations and several or all excitation locations. 

The theoretical basis of multiple input/output FRF analysis is documented in 

[10.26]. Their analysis is beyond the aim of this presentation. Surveys of 

frequency-domain parameter estimation techniques are given in [10.27]-[10.30]. 

 The advantages of the multiple input FRF techniques include better energy 

distribution in the tested structure with a consequent decrease in the effect of 

nonlinearities, excitation of local modes, reduction in the test time, increased 

accuracy of results due to information redundancy. 

 It is necessary to make a distinction between low order complete and large 

order incomplete or truncated models [10.31]. Low order complete models describe 

the system response in terms of a reduced set of modes that are effectively 

observable in the frequency range of interest. The number of response locations 

used in the model is at most equal to this number. Large order incomplete models 

describe the response with many more modes (and use more response locations) 

than are observable. This leads to the identification of rank deficient dynamic 

matrices. The most obvious shortcoming of low order complete models is the loss 

of significance between the terms in the physical model matrices and the structural 

members.  
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 In the context of multi-input methods, estimation of the model order and 

use of a minimum order solution is current practice. Principal component analysis 

(Section 9.2) is used to evaluate the rank of the measured FRF matrix. The singular 

value decomposition of this matrix offers an efficient order test. The trough in the 

graph of ratios of successive singular values helps in the selection of the number of 

modes of the low order complete model. Mode indicator functions (Section 9.2.6) 

can also be used to estimate the system order. 

 For heavily-damped systems, for which individual modes of vibration are 

not distinguishable, the frequency response is curve fitted by an FRF expressed in a 

rational fraction form (different from the partial fractions form), as a ratio of two 

frequency-dependent polynomials. Algorithms are developed for the evaluation of 

the polynomial coefficients [10.3]. If the considered error is simply the difference 

between the absolute magnitudes of the actual FRF and the polynomial ratio, 

minimizing the sum of the so defined errors at the experimental frequencies leads 

to a nonlinear least squares problem. In order to linearize the minimization 

problem, the above defined error is multiplied by a weighting function, usually the 

denominator polynomial. 

10.3.6  Appropriated excitation techniques 

 The main objective of appropriated excitation techniques is to excite (tune) 

a pure undamped natural mode of a system using a set of synchronous and 

coherently phased forces. Mode shape vectors are determined by direct 

measurement of (total or quadrature) responses at phase resonances. Subsequent 

parameter identification is performed using either methods developed for single-

degree-of-freedom systems or specific methods.  

 A special case of the multiple-excitation methods is referred to as normal 

mode testing. This is a form of modal test in which the excitation is multi-point and 

appropriated to produce a response which is directly proportional to one of the 

mode shapes of the structure. 

 In the testing phase, all the effort is to find a force distribution which 

cancels all modal components of the response except one, the desired modal vector. 

Furthermore, by measuring the variation in the response vector for the same 

excitation pattern, but applied at different frequencies in the vicinity of the 

resonance of the mode in question, the natural frequency and damping factor for 

that mode are extracted by simple SDOF analysis. This only really works well 

when the damping is proportional and the normal modes are real. 

A modal survey, as it is sometimes referred to, can be performed by 

applying several exciters to a structure and driving it sinusoidally as a function of 

time at one of its natural frequencies (sinusoidal testing). But from a practical point 

of view it is difficult, if not impossible, to achieve pure resonance in a test. A pure 
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mode exists only if damping forces are in equilibrium with the applied forces at 

each point of the structure. Because in an actual structure the dissipative forces are 

distributed continuously throughout the structure, it is impossible to achieve a strict 

equilibrium between applied and damping forces everywhere in the structure using 

a finite number of exciters. 

 The conditions at resonance are given by equations (7.197) and (7.200) 

   
     

      ,uH

,H

rrrI

rrR







 0
   (10.76) 

which means that the coincident response is zero and the quadrature response is 

that of the normal mode shape of the excited mode. 

 The above conditions are true when the number of applied forces (number 

of exciters) is equal to the number of degrees of freedom and with the number of 

computed modes. However, in practical applications the number of degrees of 

freedom required to describe the system motion is larger then the number of 

exciters, which is limited to a relatively small number (maximum 24, but more 

commonly 4 or 6). If the number of exciters used is less than the number of degrees 

of freedom, the resulting response will differ from the true natural mode shapes. 

With this incomplete modal excitation, a pure mode cannot be excited even for a 

discrete system, because the number of exciters is not sufficient to suppress the 

contributions of all other modes and to cancel the damping forces. All that can be 

made is to obtain the closest approximation to a normal mode, consistent with the 

constraints imposed.  

 If an excitation 

       t
r

rf
 i

e     (10.77) 

produces the quadrature response 

       t
r

rux
i

ei ,    (10.78) 

substituting (10.77) and (10.78) into the equations of motion (7.40), we obtain 

          02  rr umk  ,   (10.79) 

       rrr uc  .    (10.80) 

 For proportional damping, equation (10.80) becomes 

       rrrr um22   , 

where 

   
rr

r
r

M

C




2
 ,  

r

r
r

M

K
2 , 
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so that the modal masses are given by 

   
   

22 rr

r
T
r

r

u
M




 . 

 The numerator above is the energy introduced into the system and can be 

measured during the resonance test. 

 In order to determine the general form of the appropriated forces, able to 

excite a pure mode at any frequency, not only at resonance, consider the excitation 

vector 

          t
rf̂f ie  

which can produce a response 

           t
r

t
r Iuux  ii ee  , 

where  rI  is the r-th column of the identity matrix. 

 Substituting     t
rIq ie  in (7.44) yields 

            cos2 FIMK r  , 

          sinFIC r  , 

or 

             'fuumu
T

r
T

r  22  , 

                "fuucu
T

r
T

 , 

where the real and imaginary components of the general force vector are 

          'fum rr  22  , 

             "fuc r  . 

 The in-phase component  'f  balances the elastic and inertia forces, 

while the quadrature component  "f  balances the damping forces. 

 It turns out that, in order to excite a structure in a real pure undamped 

normal mode of vibration, the vector of excitation forces should have the form 

                 t
rr

t ucim"f'ff   i22i eei  , 

where the ratio between the coincident and quadrature components is frequency-

dependent. 
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 As the above distribution is hardly achievable, the solution is to use a real 

excitation vector, i.e. forces in phase with each other, of amplitudes 

       rr
r

r

r
r um2

22

2

2

21 








 

























 . (10.81) 

 This means that the appropriated forces should be proportional to the 

inertia forces corresponding to the modal displacements. 

 Undamped modes can be tuned by sinusoidal dwells or sweeps [10.32]. 

 Tuned-dwell methods are experimental iterative processes that either 

minimize phase lags between discrete points along the tested structure or monitor 

the peaks and zeroes of real and imaginary components of response. They require 

rather complicated and expensive test equipment, being based on various strategies 

of adjusting force ratios, with the possibility of overlooking modes and limitations 

in the case of nonproportionally damped structures. Sine-dwell methods are 

inadequate for analyzing systems with very close natural frequencies. Their results 

are dependent on operator skill and experience. 

 Tuned-sweep methods combine the advantages of multi-driver tuning and 

curve-fitting techniques. Narrow-band sine sweeps are made close to the undamped 

natural frequencies with fixed force-amplitude distribution. Analysis of co-quad 

plots of the complex receptance or mobility FRFs provides good estimates of the 

mode shapes and the modal parameters of systems with proportional damping. The 

complex power method [10.33] and the complex energy admittance technique 

[10.34] are described in [10.3]. None of them can ensure adequate tuning. 

Difficulties are encountered in maintaining fixed amplitudes and phases of applied 

forces due to the interaction between vibrators and tested structure. Limits imposed 

on the excitation level and inaccessibility of key points produce untunable modes 

that affect the accuracy of any multi-exciter method. 

 Analytically aided tuning methods have been developed as well, that use 

information from non-appropriated excitation, even from single-vibrator tests. 

 In Asher’s method [10.35], undamped natural frequencies are determined 

at the steep zero crossings of the determinant of the in-phase response matrix 

plotted versus frequency. Zero crossings that are not true natural frequencies can 

occur, mostly as a result of incomplete excitation. However, modes corresponding 

to these spurious frequencies exhibit large phase errors at some of the non-excited 

stations and can thus be readily identified. The method has been extended to 

rectangular FRF matrices [10.36]. The singular value decomposition of these 

matrices has been used to establish the system order, to locate undamped natural 

frequencies and to determine tuned forcing vectors and truncated normal vectors. 

The right singular vectors of the real part of the FRF matrix give the force 

distributions which minimize the singular values at the undamped natural 

frequencies. 
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 Plots of eigenvalues of the real part of a square FRF matrix versus 

frequency permit a more accurate location of undamped natural frequencies than 

the determinantal plot used in the Asher method. Each curve crosses the frequency 

axis only once, so that modes having indefinitely close (or repeated) natural 

frequencies can be separated [10.37]. All modal parameters, including modal mass 

and damping coefficients, are calculated from data obtained by non-appropriate 

excitation. 

 If the FRF matrix is separated into the real and imaginary parts, 

characteristic phase lags and forced modes of excitation can be obtained by solving 

the generalized eigenvalue problem associated with these two matrices [10.38]. 

Plots of the cosine of the characteristic phase lag versus frequency allow location 

of undamped natural frequencies at zero crossings. The modal mass results from 

the slope at these points. The complete nondiagonal matrix of modal damping 

coefficients can be also estimated [10.39]. 

10.3.7  Real frequency-dependent modal characteristics 

 This section presents methods for the determination of normal modes, 

appropriated force vectors and the corresponding modal parameters, from 

identified frequency-dependent modal vectors, using non-appropriated harmonic 

excitation. All methods are based on the solution of an eigenvalue problem at a 

series of excitation frequencies and apply to systems with general nonproportional 

damping [10.40]. This implies the use of square FRF matrices. The approximations 

due to the use of rectangular FRF matrices are briefly mentioned. 

10.3.7.1  Characteristic phase-lag modes 

 In section 7.4.2 it is shown that at any excitation frequency  , there exist 

n,...,r 1  independent monophase force distributions     rf̂  , 

eigenvectors of (7.189) 

          0 rIrR HH  .  (10.82) 

 Each force vector excites a corresponding real valued monophase response 

mode   r  of forced vibration, given by (7.192) 

       rr Hr  i
e ,    (10.83) 

in which all points of the system vibrate in phase with one another, at a 

characteristic phase lag  r  with respect to the excitation. 

 The eigenvalues in (10.82) are given by 
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    

    rIr

rRr
rr

H

H







 

T

T

1tan .  (10.84) 

 At an undamped natural frequency, when r  , the r-th eigenvalue 

  0rr  , the r-th characteristic phase lag   090rr  , the r-th response modal 

vector becomes the r-th normal undamped mode     rrr u  and the r-th 

excitation modal vector becomes the forcing vector appropriated to the r-th natural 

mode     rrr   . 

 The graphs of  r ,  rcos ,  rsin , and  r  can be used for 

extraction of modal parameters. Undamped natural frequencies are located at the 

zero crossings of the diagrams  r ,  rcos , and  r . 

 Modal masses rM  of normal modes (7.19) are proportional to the slopes at 

the zero crossing points 
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. (10.85) 

 The diagonal modal damping coefficients are given by 

      
 rrr

r
T
r

r
rr

Q
uC






11
 ,  (10.86) 

where rQ  is a frequency-dependent scale factor. 

 The appropriated force vectors  r  are the latent vectors of the 

coincident FRF matrix evaluated at the respective natural frequency (10.76) 

        0rrRH  .   (10.87) 

 The normal vectors  ru  are given by (7.200) 

        rrIr Hu  ,   (10.88) 

where (10.80) 

       rrr uc  . 

 The non-diagonal damping coefficients srC  are obtained from 

      r
T
s

r
sr uC 



1
 .  (10.89) 

 The identification methodology consists of the following steps: 
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 1. Using matrices   RH  and   IH , measured at discrete values of 

the forcing frequency  , the eigenvalue problem (10.82) is solved for each  , 

yielding  r ,  r , and  r  for n,...,r 1 . 

 2. The response modal vectors  r  are calculated from equation (10.83) 

for n,...,r 1 . 

 3. The graphs of the following functions are plotted versus frequency: 

 r ,  rcos ,  rsin ,  r . 

 4. The undamped natural frequencies are determined at the zero crossings 

of the diagrams  r  or  rcos . 

 5. The slope of each curve  r  is measured and the modal masses rM  

are calculated from equations (10.85) and the diagonal modal damping coefficients 

rrC  from (10.86). 

 6. The matrices   rRH   and   rIH   are calculated by interpolation, 

based on existing experimental data or from a new series of measurements at r  

n,...,r 1 . 

 7. The vectors     
rrr    and     

rrru   are calculated 

from (10.87) and (10.88), then the non-diagonal modal damping coefficients are 

obtained from (10.89). 

 Note that the above procedure applies for square FRF matrices only, i.e. 

when the number of excitation points is equal to the number of response 

measurement points and to the number of active modes of vibration in the 

frequency range of interest.  

 Since  r  are unit vectors, the amplitude information in the spectral 

decomposition of  H  (7.173) is contained in the scaling factors  rQ  of the 

modal receptance matrix ¡h«=¡ ieQ «. Each entry represents an enhanced FRF 

        r
T
rrrr HQeQh r  2i




  (10.90) 

due to the filtering effect of  r .  

 The functions  rh  are called Spatially Filtered Receptances (SFR). 

Modal parameters of normal modes can be determined from the SFR plots, in the 

vicinity of UNFs, using SDOF curve fit formulae [10.41]. Since the response 

modal vectors  r  are not mutually orthogonal, the r-th mode in the function 

 rh  is not completely decoupled. 
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Example 10.4 

 The 10 degree-of-freedom system shown in Fig. 10.25 [10.42], represented 

by the masses and stiffnesses listed in Table 3, is considered to illustrate the 

method. The system is grounded at spring #1. Viscous damping coefficients are 

equal to 0.002 of the stiffness values. 

 

Fig. 10.25 

 FRFs were computed at 1024 frequencies between 0 and 10 Hz for the 

1010  elements of the FRF matrix. An additive uniformly distributed random 

noise of 5% of the mean magnitude of the FRF matrix was added to each FRF. 

Table 10.3.  Physical parameters of the 10-DOF system 
 

DOF 1 2 3 4 5 6 7 8 9 10 

m 4.00    3.61    3.24    2.89    2.56     2.25    1.96   1.69   1.44    1.21     

k 2000 1900 1800 1700 1600 1500 1400 1300 1200 1100 

 

 Simulation started by selecting points 1, 8 and 10 as input and response 

measurement points. This is an arbitrary selection. Best location by the Improved 

Reduction System method [10.43] is at points 2, 6, 10, while location by the 

Effective Independence method [10.44] is at points 3, 6, 10. A monophase analysis 

of the 33  FRF matrix for DOFs 1, 8 and 10 has been carried out at each of the 

1024 frequencies.  

  

    Fig. 10.26          Fig. 10.27 
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 The RMIF plot ( rRMIF  ) is shown in Fig. 10.26. Each of the three 

curves crosses several times the frequency axis, locating some of the UNFs. Thus 

1  locates 1f  and 2f , 2  locates 3f , 4f  and 5f , while 3  locates 6f  and 10f . 

For comparison, the MMIF plot is given in Fig. 10.27.  

 Undamped natural frequencies (UNF) located by RMIF are compared to 

analytical FEM values in Table 10.4. Note that only the first three values are of 

interest for this part of analysis. 

Table 10.4.  Undamped natural frequencies of the 10-DOF system 

Mode 1 2 3 4 5 6 10 

 Undamped natural frequency, Hz 

Analytical 0.7183 1.8192 2.9272 3.9799 4.9444 5.7937 8.3504 

RMIF 0.7184 1.8174 2.9309 3.9844 4.9423 5.7807 8.2534 

 

 The plot of rsin  vs. frequency is shown in Fig. 10.28. Comparison with 

the MMIF reveals some fake troughs so that it cannot be used as a mode indicator. 

This feature is due to the model incompleteness. For complete models, the number 

of curves equals the model order. Each curve has only one peak at the 

corresponding UNF. 

  
      Fig. 10.28       Fig. 10.29 

 The rcos  plot is shown in Fig. 10.29. Crossings of frequency axis with 

positive slope correspond to UNFs. Crossing points with negative slope correspond 

to peaks in the rsin  plot that do not indicate UNFs. Again, this feature is due to 

the incompleteness of the reduced model. Instead of crossing only once the 

frequency axis, at the corresponding UNF, each curve has to cross several times the 

frequency axis to locate more than one UNF, so that fake crossings with negative 

slope appear. 

 The frequency dependence of the elements of the ‘phi’ vectors  r  is 

shown in Fig. 10.30 and that of the ‘gamma’ vectors  r - in Fig. 10.31. Note 

that, even for a system with proportional damping, monophase modes of 
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incomplete models are frequency dependent. This contrasts with complete models, 

that exhibit frequency independent mode shapes in the case of proportional 

damping (Section 7.4.3). 

 At UNFs, gamma-vectors become the appropriated force distributions 

 r  able to isolate the corresponding normal mode. 

 At UNFs, phi-vectors become the real normal modes. Thus 

        ,u,u 212111 )(     )(             )(     )( 424323 ,u,u    

     )( 535 ,u      ........ )( 636 ,u  

 While        21 u,u and  3u  are 'exact', the others are approximations. 

The number of 'exact' mode shapes is equal to the number of input points. 

 
 

    Fig. 10.30       Fig. 10.31 

 If six response measurement points are selected at locations 1, 3, 4, 6, 8, 10 

and only three input points are chosen at locations 1, 8, 10, i.e. a subset of the 

output points, then a rectangular FRF matrix is obtained. In this case, six-element 
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phi-vectors result from equation (10.83), offering better spatial resolution. They 

can be used to obtain better estimates of the normal modes.  

 The MMIF plot from Fig. 10.27 corresponds to this selection of excitation 

and response measurement locations. 

 Once the excitation modal vectors are obtained, they can be used to 

enhance a response mode shape on a measured FRF by spatial filtering. Plots of the 

three spatially filtered receptances or modal receptances rh  are shown in Figs. 

10.32 to 10.36. It can be seen that several modes are observable in each SRF. 

 Each SRF magnitude curve exhibits more than one peak. Only peaks 

corresponding to zero crossings in the RMIF plot can be analyzed to obtain 

estimates for the damping ratio and modal mass of normal modes. 

 
 

      Fig. 10.32           Fig. 10.33 

 Modal damping ratios computed by SDOF circle fit methods are compared 

to analytical FEM values in Table 10.5. Values determined based on the slope of 

the RMIF curves at the points of frequency axis crossing (Section 9.3.2.4) are also 

presented. 
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Table 10.5.  Modal damping ratios of the 10-DOF system 

Mode 1 2 3 4 5 6 10 

 Damping ratio,% 

FEM 0.451   1.143   1.839   2.501   3.107   3.640   5.247   

SDOF circle fit 0.451 1.142 1.837 2.496 3.102 3.633 5.193 

RMIF slope 0.449 1.145 1.843 2.515 3.121 3.722 5.362 

 

 Single DOF analysis of SFR loops gives better results. Again, only the first 

three modes are relevant for the discussion, but fairly good estimates have also 

been obtained for other four modes. 

 

 
     Fig. 10.35 

 
            Fig. 10.34            Fig. 10.36 

 Nyquist plots of SFRs have almost circular loops for the modes that can be 

analyzed using SDOF parameter estimation methods. Figure 10.35 shows the 

second SFR with circular loops for modes 3 and 4. Figure 10.36 is the Nyquist plot 

for the third SRF and has circular loops for modes 6 and 10. 
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 10.3.7.2  Best monophase modal vectors 

 As mentioned in Section 9.3, test derived FRF matrices are usually 

rectangular, with the number of rows (response measurement coordinates), oN , 

much larger than the number of columns (excitation coordinates), iN . In equation 

(7.174)  

        f̂Hx~ i ,    (10.91) 

  iH  is an io NN   matrix. 

 The monophase condition (7.182) 

      IR xx  ,    (10.92) 

leads to the spectral problem of a rectangular matrix pencil 

        f̂Hf̂H IR      (10.93) 

in which the number of equations, oN , is larger than the number of unknowns, 

iN . 

 The (approximate) solution of (10.93) implies finding the force distribution 

that can produce the closest approximation to a monophase response vector, for the 

given number and location of excitation coordinates.  

 Provided that 0cos  , this can be obtained from the eigenproblem 

        rrr f̂Bf̂C   ,   (10.94) 

where the square matrices 

       R
T

I HHC  ,      I
T

I HHB  .  (10.95) 

 The characteristic phase-lag theory presented in Section 7.4.2 can be 

formally reformulated replacing  RH  by  C , and  IH  by  B . 

 The force vector  rf̂  gives rise to a response 

         rf̂Hx̂x~ r 
 i

e .   (10.96) 

 Premultiplying by  TIH  we obtain 

 
         

       r

r

rrrr

r
T

I

f̂Bf̂B

f̂BCx̂H


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 i2

i

e1i                              

ie








 

or 

         rr
T

I f̂Bx̂H 21  .  (10.97) 



10. STRUCTURAL PARAMETER IDENTIFICATION 217 

 If   i
T

I NH rank , then the smallest norm solution of (10.97) is 

       rIrr f̂Hx̂ 21  ,   (10.98) 

which is the ‘best’ response vector. 

 For 0cos r , 

        0rrC  .    (10.99) 

 The condition 

      0det rC  , 

or 

          0det rR
T

rI HH    (10.100) 

gives the undamped natural frequencies (extended Asher’s method [10.36]). 

 10.3.7.3  Eigenvectors of the coincident FRF matrix 

 A simpler modal parameter extraction method [10.37] is based on the 

eigenvalue problem of the real part of the FRF matrix 

        rrrRH vv   .  n,...,r 1  (10.101) 

 If the system is acted upon by the monophase force distribution   t
r e iv , 

the eigenvalue  r  is a measure of the reactive energy transmitted to the system. 

This energy cancels at the undamped natural frequency r . 

 The forcing vectors  rv  satisfy the orthogonality conditions 

   
   

      .H

,

sR
T
r

s
T
r

0

0





vv

vv


 sr    (10.102) 

 Solving equation (10.101) at discrete values  , for which   RH  is 

measured, and plotting the eigenvalues r  against frequency, the undamped 

natural frequencies r  can be located at the zero crossings,   0rr  . 

 For r   equation (10.101) becomes identical with equation (7.197). 

Thus     rrr  v  is the tuned forcing vector that can isolate the normal 

mode  ru  at r . The latter is obtained from (7.200) 

        rrrrI uH   ,   (10.103) 
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where r  is a frequency-dependent scale factor. 

 Because the determinant is equal to the product of eigenvalues 

        r

N

r
RH

1
Πdet


 ,   (10.104) 

it follows that 

      0det rRH  .    (10.105) 

 This is the basis of Asher’s method [10.35]. 

 Denote 
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  (10.106) 

to obtain 

     0rr  , 
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     rrrrrr C 2 . 

 Values for rM  and rrC  can be obtained from the above equations. 

 The quadratic forms in equations (10.106) are proportional to the reactive 

and respectively the active energy transmitted to the system. 

 If vectors  r  are orthonormalized, the modal masses of normal modes 

given by 
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,   (10.108) 

are proportional to the slope of the diagram  r  at the points of frequency axis 

crossing. Non-diagonal modal damping coefficients are given by  

      r
T
s

rr
rs uC 



1
 .    (10.109) 

 Generally, the modal damping coefficients are given by 

        rrI
T
s

r
sr uZuC 



1
 ,   (10.110) 

where the matrix   IZ  can be calculated from measured data (7.179) 
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              11   HHHZ II .  (10.111) 

 The characteristic eigenvalue plots permit a more accurate location of the 

UNFs than the determinantal plot used in Asher’s method. The technique can be 

used to separate vibration modes with closely spaced UNFs and can identify modes 

with overcritical damping. The main drawback is the requirement to determine, in a 

preliminary stage, the order of the system and to use square FRF matrices. 

Example 10.5 

 Consider the two-degree-of-freedom system with nonproportional damping 

from Fig. 10.37, a, with the following parameters: kg101 m , kg12 m , 

mN107
1 k , mN106

2 k , mNs50021  cc . 

 
 

a b 
Fig. 10.37 (from [10.45]) 

 First, the polar diagrams of the complex receptances were plotted based on 

analytically derived expressions of the FRFs polluted with 5% additive noise. The 

subsequent calculations were performed considering these as experimentally 

generated plots. The graph of   RHdet  as a function of frequency is shown in 

Fig. 10.37, a. The eigenvalues of the matrix   RH  are plotted as a function of 
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frequency in Fig. 10.37, b. The undamped natural frequencies are located at the 

zero crossings of this plot. 

 Table 10.6 shows a comparison of the values of modal characteristics 

determined solving the equations of motion and those estimated from the polar 

plots using the above presented method [10.45]. 

Table 10.6.  Modal parameters of 2-DOF system from Fig. 10.37 

Quantity 

Values determined solving the 

equations of motion 

Values estimated from the polar 

plots 

Mode 1 Mode 2 Mode 1 Mode 2 

r  854.309 1170.5367 854.3 1170.0 

 r   
58771
1

.
  

78730
1
.

  
587681
1

.
  

78730
1
.

 

r1  61037581  .  
61036340 .  

6103741  .  
6103910 .  

 ru   
70153
1

.
  

7012
1
.

  
70163
1

.
  

72152
1
.

 

r

r






d

d
 

9107721  .  
91033  .  

9102422  .  
9103143  .  

rM  23.701 17.298 21.562 16.341 








2221

1211

CC

CC
 









7873504500

450024149
.

.  








668694533

453384154
.

.  

Example 10.6 

Consider the two-degree-of-freedom system from Fig. 10.38.  

 

Fig. 10.38 
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The physical parameters are given in Table 10.7 for the following four 

cases: Case I: lightly damped system with relatively separated natural frequencies; 

Case II: lightly damped system with closely spaced natural frequencies; Case III: 

highly damped system with relatively separated natural frequencies; Case IV: 

highly damped system with closely spaced natural frequencies.  

Table 10.7.  Physical parameters of 2-DOF systems in Example 10.6 

Case I II III IV 

21 mm   kg  0.0259 0.0259 0.0259 0.0259 

31 kk   mN  100 100 100 100 

2k  mN  50 1 50 1 

1c  mNs  0.3 0.3 3 3 

2c  mNs  0.2 0.2 2 2 

3c  mNs  0.1 0.1 1 1 

 

Draw the plots of the determinant and the eigenvalues of the coincident 

receptance matrix versus frequency, for the four systems, and estimate the modal 

parameters based on these diagrams. 

The Nyquist plots of the receptance FRFs are shown in Fig. 4.40. 

Analytical expressions of the modal parameters are given in Example 4.15. 

 

Fig. 10.39 
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The diagrams are shown in Fig. 10.39. The undamped natural frequencies 

are located at the crossings with the frequency axis. The coincident-response 

determinant plot has a single curve, making difficult the accurate location of close 

natural frequencies. In the plot of the eigenvalues of the coincident response 

matrix, each curve crosses only once the frequency axis, at the corresponding 

natural frequency. This enables a more accurate location of undamped natural 

frequencies, but applies only to square FRF matrices, when the number of output 

points is equal to the number of input points, which is hardly to achieve in a test.  

The numerical values of the quantities derived from the determinantal and 

eigenvalue curves, as well as the modal parameters are given in Table 10.8. 

Table 10.8.  Modal parameters of 2-DOF systems in Example 10.6 

Case I II 

1
d

d
10 6




 

2
d

d
10 6




 -0.164 0.0455 -35.59 33.65 

1
d

d
10 16




 

1
d

d
10 26




 -166.8 -15.94 -16679 -2232 

1  2  62.24 87.69 62.16 62.71 

 
1   

2  








330
1
.

 







 710

1
.

 








330
1
.

 







 710

1
.

 

3
1 10  

3
2 10  53.65 16.26 53.65 22.77 

 
1u   

2u  








1
1  








1
1  









1
1  








1
1  

1M  2M  0.0518 0.0518 0.0518 0.0518 

1K  2K  200 400 200 204 

1  2  0.062 0.132 0.055 0.192 

Case III IV 

1
d

d
10 6




 

2
d

d
10 6




 -186.7 15.97 -0.00357 0.00346 

1
d

d
10 16




 

1
d

d
10 26




 -16679 -1594 -166.8 -22.32 

1  2  64.28 84.92 62.16 62.71 

 
1   

2  








330
1
.

 







 710

1
.

 








330
1
.

 







 710

1
.

 

3
1 10  

3
2 10  5.365 1.626 5.365 2.277 

 
1u   

2u  








1
1  








1
1  









1
1  








1
1  

1M  2M  0.0518 0.0518 0.0518 0.0518 

1K  2K  200 400 200 204 

1  2  0.540 1.409 0.547 1.919 



10. STRUCTURAL PARAMETER IDENTIFICATION 223 

Example 10.7 

 Consider the two-degree-of-freedom system with nonproportional damping 

from Fig. 10.38, with the following parameters: kg1001 m , kg12 m , 

mN1099 6
1  .k , mN1010 6

2  .k , mNs12521  cc .  

 

Fig. 10.40 
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 First, the Nyquist plots of complex receptances are plotted point by point 

(Fig. 10.40) based on the analytical expressions. The subsequent calculations are 

performed considering these as noise-free experimentally generated plots. Next, the 

eigenvalues of the matrix   RH  are plotted as a function of frequency as in Fig. 

10.41. At the zero crossings, the undamped natural frequencies are determined as 

srad3001   and srad63312 . . They are marked on the polar plots in Fig. 

10.40 along with the first undamped natural frequency 312.659 rad/s. 

 
Fig. 10.41 

 The appropriated forcing vectors  r  are determined as the latent 

vectors of the coincident receptance matrix calculated at the natural frequencies 

      
















 

0

0

950071

07121
10300 1

6
1 

..

..
HR ,  












121

1
1 .

 , 

      




















 

0

0

190

90810
106331 2

6
2 

.

..
.HR ,  












90

1
2 .

 , 
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 The undamped normal modes  ru  and the normalization factors r  in 

(10.103) are determined as follows 

    





























 

0410

1
102963

121

1

53233

3340
10300 66

1 .
.

...

..
H I  , 

          































 

0110

1
109751

90

1

819951

951220
106331 66

2 .
.

...

..
.H I  , 

hence 

6
1 102963  . , 6

2 109751  . ,  









0410

1
1 .

u ,  











0110

1
2 .

u . 

 The slopes of the tangents to the curves from Fig. 10.41 at the points of 

intersection with the real axis are 

 
6

300

1 10590
d

d 











 .





, 

6

6331

2 10290
d

d 











 .

.



. 

 The modal masses are given by 

   
   

r

r

rr

r
T
r

rM

















d

d

2 2
, 

resulting in 062041 .M   and 92022 .M  . The modal stiffnesses 2
rrr MK   are 

6
1 1036518  .K  and 6

2 103122  .K . 

 The modal damping matrix calculated from (10.109) is 

     













13610249

02494441
250

..

..
C . 

 Table 10.9 shows a comparison of the values of the true modal 

characteristics, determined solving the equations of motion, and those estimated 

from the polar plots using the above presented method. The modal damping ratios 

are also calculated as  

   
rr

rr
rr

M

C




2
 . 

 The system has nonproportional damping. Solving the eigenvalue problem 

(7.88) we obtain the complex eigenvalues  

  659312i78541 ..  , 685312i965582 ..  , 

and the complex eigenvectors 

   











6982i2071

1
1 ..

 ,  











22235i8658

1
2 ..

 . 



226                                                                                           MECHANICAL VIBRATIONS 

Table 10.9.  Modal parameters of 2-DOF system from Fig. 10.38. 

Quantity 
True values  ‘Measured’ values  

Mode 1 Mode 2 Mode 1 Mode 2 

r  300 11100  300 331.6 

 r  








 89

1
 








 1211

1
 








 121

1
.

 







 90

1
.

 

 ru  









10
1

 







10

1
 









0410
1
.

 







 0110

1
.

 

rM  200 200 204.06 202.9 

rK  61018   
61022   

61036518 .  
6103122 .  

rr  0.08541 0.11495 0.08462 0.11357 








2221

1211

CC

CC
 










6149
4941

250  









1361449
02494441

250
..
..

 

 

 The damped natural circular frequencies  

  srad6593121 . ,        srad6853122 . , 

are only srad0260.  apart, hence the damped natural frequencies are only 

z. H00410  apart. This explains the particular shape of the Nyquist plots, without 

clearly separated loops, which requires specific parameter estimation techniques. In 

comparison, the difference between the undamped natural frequencies is 

  Hz0395212 .  , which makes their location much easier. 

 

Fig. 10.42 
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 The Real Mode Indicator Function (RMIF) is presented in Fig. 10.42. For 

comparison, the Multivariate Mode Indicator Function is shown in Fig. 10.43. 

 

Fig. 10.43 

10.4  Time domain methods 

 When the measurement data span a large frequency range and contain the 

contribution of a large number of modes, identification methods based on time 

domain models tend to provide the best results. However they can only estimate 

modes inside the range of measurements and take no account of the residual effects 

of the off-range modes. A detailed presentation of methods like the Complex 

Exponential, Least-Squares Complex Exponential, Polyreference Complex 

Exponential and Eigensystem Realization Algorithm is beyond the aim of this 

lecture course and can be found in [10.26]. In the following, only one variant of the 

Ibrahim Time Domain is presented and the basis of the Random Decrement 

technique. 

10.4.1  Ibrahim time-domain method 

A method for the direct identification of modal parameters from the free 

response is known as the Ibrahim Time Domain method [10.46].  

In the early formulation, it was assumed that the number of response 

measurement locations oN  equals the number of degrees of freedom of the 

hypothetical lumped parameter system with all modes excited. This required prior 

knowledge of the number of equivalent degrees of freedom to be excited, in order 

to use the correct number of measurement locations. Later this condition was 

relaxed, resulting in the following identification algorithm. 

The solution (7.69) of the equation of the free motion (7.68) is 

      tx  e ,     (10.112) 
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so that (7.70) 

           02   kcm .  (10.113) 

The problem of modal testing is to determine, from the test data, the values 

of   and    which satisfy equation (10.113). 

The measured free responses at oN  locations on a structure under test can 

be written as  

     



n

r

t
r

rx
2

1

e
 .    (10.114) 

The response at time it  is 

             
















 


in

i

ir

t

t

n

n

r

t
rii xtx

2

1

e

e

e 221

2

1 



 

 . (10.115) 

The response vectors measured at tN  different instances of time can be 

written as 

             





















tNnnn

tN

tN

t

ttt

ttt

ttt

nNxxx

22212

22212

12111

eee

eee

eee

22121
















  

         (10.116) 

or 

        X .    (10.117) 

Responses that occur at time t  later with respect to those of equation 

(10.117) are 

             

     

     

     

























tttttt

tttttt

tttttt

nN

tNnnn

tN

tN

t
x̂x̂x̂









22212

22212

12111

eee

eee

eee

22121








  

          (10.118) 

where 

      ttxx̂ ii  .    (10.119) 
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Equation (10.118) can be written as 

                  nN
ˆˆˆx̂x̂x̂

t 22121    (10.120) 

or 

        ̂X̂  ,    (10.121) 

where 

      t
ii

iˆ  e . tN,...,,i 21   (10.122) 

The responses given by equations (10.117) and (10.121) can be 

manipulated to solve for the eigenvalues and modal vectors. A square matrix  sA  

of order oN , referred to as the “system matrix”, can be defined such that  

         ˆAs  .    (10.123) 

Premultiplying (10.117) by  sA  and using equations (10.121) and 

(10.123) we obtain 

        X̂XAs       (10.124) 

so that 

         XX̂As     (10.125) 

where the pseudo-inverse 

            1


TT
XXXX .   (10.126) 

Equation (10.123) relates each column  i  of    to the corresponding 

column  i̂  of  ̂  through 

        iis
ˆA   .    (10.127) 

But the column vectors  i  and  i̂  are related by (10.122) so that 

        i
t

is
iA  

e     (10.128) 

which is a standard eigenvalue problem. The eigenvectors  i  are the modal 

vectors and the eigenvalues iii  i  can be obtained from 

  ii
tie 

i  

as 
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   22ln
2

1
iii

t



  ,   (10.129) 

  
i

i
i

t 




 1-tan

1
 .    (10.130) 

Since  sA  is of order oN , if nNo 2  there will be computational modes 

which have to be sorted out.  

A Modal Confidence Factor (MCF) has been developed based on equation 

(10.122) calculated using different time interval shifts [10.22]. 

The accuracy of all mode shape identifications has been quantified by 

computing a Mode Shape Correlation Constant (MSCC) between the identified 

mode shapes  2  and the input mode shapes  1 , calculated in a manner 

analogous to that of coherence [10.47] 

 
   

         
100

2211

2

21










TT

T

MSSC .  (10.131) 

The concept is known as the Modal Assurance Criterion (MAC) as 

presented in [10.48].  

10.4.2  Random decrement technique 

There are cases when controlled excitation or initial excitation cannot be 

used. Examples are the in-flight response measurements, where a complete 

knowledge of the excitation is usually not available. In such cases, the random 

decrement (randomdec) technique [10.49] is often used to obtain the free responses 

needed in the above identification method. 

 Simply stated, the randomdec technique provides a means for obtaining 

damping and frequency information by performing an ensemble average of 

segments of a random time history of the structural response. The underlying 

assumption in the method is that the structural response is the linear superposition 

of the responses to a step force (initial displacement), an impulsive force (initial 

velocity), and a random force. If the segments used in the ensemble average are 

chosen so that the initial displacement is the same for all segments and the initial 

velocities of alternating segments have opposite signs, then the resulting ensemble 

average, called the randomdec signature, represents the response to a step force, 

since the averages of the impulse force and random force components approach 

zero as the number of segments used in the ensemble average increases. 
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 To avoid averaging out the deterministic part of the signal, the samples can 

be taken starting always with: 1) a constant level (this will give the free decay step 

response), 2) positive slope and zero level (this will give the free decay positive 

impulse response), and 3) negative slope and zero level (this will give the free 

decay negative impulse response). Different randomdec signatures can be obtained 

by different “triggering” (selection of the starting point) of each ensemble member. 

Thus, for flutter prediction in linear systems constant-level triggering is not 

necessary. The number of segments to be averaged depends on the signal shape. 

Usually 400 to 500 averages are sufficient to produce a repeatable signature. 

 The essentials of one type of construction for this approach are shown in 

Fig. 10.44. Houbolt’s approach [10.50] consists of triggering each time the 

response crosses zero with a positive slope, and triggering and inverting each time 

the response crosses with a negative slope (option 1). 

 

Fig. 10.44 (from [10.50]) 
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 Other variants are based either on Cole’s approach [10.51] of triggering 

each time the response crosses a preselected level, regardless of the sign of the 

slope (option 2) or on Cole’s approach of triggering each time the response crosses 

zero with a positive slope (option 3). A comparison of these three options is given 

in Fig. 10.45. 

 For a single degree of freedom system, the natural frequency and damping 

ratio can be calculated directly from the randomdec signature by the logarithmic 

decrement measurement, since the signature is a free vibration decay curve of the 

system. The practical decay analysis is based on the assumption that the decay time 

history is an exponential function. A plot of the log magnitude of the decay versus 

time is a straight line (Fig. 2.25). The slope of plot of the log of the successive half-

cycle amplitudes versus the number of half cycles can be used to determine the 

damping ratio. 

 For multi-degree-of-freedom systems, in which modes are well separated, 

the natural frequency and damping ratio can be determined either by bandpass 

filtering the response data or using a moving-block technique. 

 

Fig. 10.45 

 Theoretical aspects and developments of the random decrement technique 

are presented in [10.52]. 
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11. 
DYNAMIC MODEL REDUCTION 

During the pre-test analysis phase, the finite element model, which 

contains more degrees of freedom than can be surveyed, is reduced to a condensed 

test/analysis model. Assuming that the original FEM is an accurate representation of 

the physical structure, the aim is to choose a reduced order model which represents 

the FEM as closely as possible.  

Four methods of reducing FEM matrices are currently in use: physical 

coordinate reduction, modal coordinate reduction, hybrid reduction and FRF 

reduction. These reduction methods have shown to differ in both accuracy and 

robustness. 

11.1  Reduced dynamic models 

The importance of the dynamic reduction in a dynamic analysis is 

emphasized in Fig. 11.1. While the cost of assembling the dynamic equations and the 

cost of recovering response quantities (such as forces and stresses) are each 

proportional to the number of degrees of freedom dofN  of the model, the cost of the 

solution of dynamic equations is proportional to something between the square and 

the cube of the number of DOFs. In order to lower this cost, modal reduction is used 

when 300dofN , and non-modal reduction is recommended when 300dofN .  

In the early days of dynamic analysis using the finite element method, the 

computers used were far less powerful than those of today and it was therefore 

necessary to reduce the number of physical DOFs to solve “large” eigenvalue 

problems. The Irons-Guyan reduction [11.1]-[11.3] was used as the basic static 

condensation technique. 

Today computers are very powerful and the resources of RAM and disk 

space are almost unlimited. Enhanced eigenvalue solvers based on subspace iteration 

have been developed to solve real large eigenvalue problems (see Chapter 8). 

Physical coordinate reduction is no longer needed to solve large eigenvalue 
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problems. However, modal tests are performed with a limited number of 

accelerometers. To investigate the orthogonality properties of the measured real 

modes, a reduced mass matrix with a rank equal to the number of measured 

displacements (DOFs) is necessary. In general, variants of the Irons-Guyan static 

condensed mass matrix are used. 

 

Fig. 11.1 

System level FEMs must be limited in size so that dynamic analyses should 

not be uneconomic or impractical. In complex aerospace structures, the subsytem 

mass and stiffness matrices shall be condensed and delivered to the prime contractor. 

The reduced model must meet high requirements with respect to natural frequencies 

and mode shapes. Modal reduction methods have been developed, as well as hybrid 

methods like the Craig-Bampton technique [11.4]. 

11.1.1  Model reduction philosophy 

In developing a reduced-order model, it is assumed that for a general, 

linear, time-invariant dynamic system there exists a discrete analytical model 

            tfukucum   ,  (11.1) 
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where  m   c  and  k  are, respectively, the mass, damping and stiffness matrices 

of order nn  ,  f  is the forcing distribution and  u  is a column vector of 

displacement coordinates in the configuration space.  

The free vibration problem of the associate conservative system 

        0 ukum  ,   (11.2) 

leads to the eigenvalue problem 

       mk 2     (11.3) 

or 

    k    m  Λ ,   (11.4) 

where the modal matrix 

       




 n 21

   (11.5) 

and the spectral matrix 

   Λ  =  2
rdiag  .    (11.6) 

In order to comply with the usual notation used in test-analysis correlation 

studies, the notation in this chapter differs occasionally from the rest of the book. 

A mathematical model such as equation (11.1) may be large enough to 

exceed the order of the test model, i.e. the number of available response 

measurement coordinates. Thus, it is important to seek the means of reducing the 

model order without seriously degrading the model ability to predict the dynamic 

response of the structure. 

A reduced order model can be obtained using a coordinate transformation 

      xTu  ,     (11.7) 

where  x  is an 1  column vector  n  and  T  is an n  rectangular 

transformation matrix which relates the n elements of the vector  u  to a smaller 

number   of the elements of  x . Substituting (11.7) in (11.1) and pre-multiplying 

by the transposed transformation matrix gives 

                          tfTxTkTxTcTxTmT
TTTT

  , 

or 

          redredredred fxkxcxm   ,  (11.8) 
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where        TmTm
T

red  ,  redc  and  redk  are   reduced-order matrices 

and       tfTf
T

red   is a reduced forcing vector. 

Model reduction techniques vary in the way the matrix  T  and the vector 

 x  are chosen. A proper choice of  T  will drastically reduce the number of DOFs 

without altering the lower eigenfrequencies and the mode shapes of interest. 

In the reduction, practically, the only requirement that is being imposed is 

that of the preservation of kinetic and strain energies 

                   xkxxTkTxukuU red
TTTT

2

1

2

1

2

1
 , 

                   xmxxTmTxumuV red
TTTT 

2

1

2

1

2

1
 . 

11.1.2  Model reduction methods 

There are five basic numerical procedures in common use for structural 

model reduction: a) physical coordinate reduction, b) modal coordinate reduction, c) 

combined static and modal reduction, d) Rayleigh-Ritz reduction, and e) principal 

component reduction. 

a)  Independent coordinate method 

This method assumes that a subset of physical coordinates may be 

expressed as a linear combination of the remaining coordinates.  

Let  au  be an 1an  vector of independent (active) coordinates and  ou  

be an 1on  vector of dependent (omitted) coordinates. If  au  resides in the top 

partition of the full  u  vector, and  ou  in the bottom partition 

   
 
 

  a
o

a uT
u

u
u 









 .   (11.9) 

If a constraint equation can be established between the two sets 

      aoao uGu  ,    (11.10) 

where  oaG  is an ao nn   matrix, then 

  
 
 

 
  

 
 

 a
oa

a

aoa

a

o

a u
G

I

uG

u

u

u
u 




























    

,  (11.11) 
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where  aI  is an aa nn   identity matrix. 

The transformation matrix is  

   
 
 








oa

a

G

I
T

  
.     (11.12) 

b)  Rayleigh-Ritz method 

In the Rayleigh-Ritz analysis, the vector  u  can be expanded in a series 

of admissible function vectors 

         


L

r
rru

1

,   (11.13) 

where        




 L 21

 are Ritz-basis vectors and 

  
T

  L 21  are Ritz coordinates. 

Reduction methods based on Ritz vectors result in reduced models that do 

not necessarily include a subset of the DOFs of the full modes. They are not 

examined herein. 

Comparing (11.13) with (11.9) and (11.11) it turns out that the columns of 

 T  are Ritz-basis vectors. They are displacement patterns associated with the  au  

DOFs when the  ou  DOFs are released. They represent global shape functions. 

They are also referred to as “constraint modes”, defined by producing a unit 

displacement at each active DOF in turn, with all other active DOFs blocked and all 

omitted DOFs unconstrained and unloaded. 

c)  Modal method 

Let 

         




    21n   (11.14) 

be the first   modal vectors of (11.4). Then a transformation 

      qu n ,    (11.15) 

where   
T

q   qqq 21  are modal (principal) coordinates, is similar to 

(11.7). 

d)  Hybrid methods 

In some model reduction schemes, the reduced vector is defined as a 

combination of physical and modal coordinates 
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   
 
 









p

a

q

x
x ,     (11.16) 

where  ax  are active physical coordinates and  pq  are some generalized 

coordinates. 

The transformation (11.7) becomes 

   
   
   

 
     xT
q

x

GG

I
u

p

a

opoa

a























0
, (11.17) 

where  oaG and  opG are defined relative to the various reduced model concepts. 

11.2  Physical coordinate reduction methods 

Physical coordinate reduction methods, first developed as eigenvalue 

economizers, were used to allow faster computation of the eigenproperties with 

computer storage savings. The relationship between omitted (discarded) and active 

(retained) DOFs is employed to reduce the size of the eigenvalue problem (before 

solving it), while preserving the total strain and kinetic energies in the structure. 

The static or Irons-Guyan reduction [11.3] neglects the inertia terms 

associated with the omitted degrees of freedom (o-DOFs). In the Habedank 

reduction [11.5], currently known as the Improved Reduced System (IRS) method 

[11.6], the inertial effects of o-DOFs are taken into account. The iterative IRS 

method (IIRS) converges to a reduced model which reproduces a subset of the modal 

model of the full system [11.7].  

Selection of active DOFs (a-DOFs) is of considerable importance. An 

automatic selection of a-DOFs was first presented by Henshell and Ong [11.8]. The 

automatic selection of the number and location of a-DOFs suggested by Shah and 

Raymund [11.9] complies with Kidder’s guideline [11.10] and is based on small 

values of the ratio of the diagonal elements of the stiffness and mass matrices. 

Stepwise elimination of o-DOFs is used in [11.11]. 

11.2.1  Irons-Guyan reduction 

11.2.1.1  Static condensation of dynamic models 

The Irons-Guyan reduction (GR) technique retains as ‘active’ (masters) a 

small fraction an  of the model DOFs. The remaining on  omitted DOFs (slaves) are 
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forced to take values giving least strain energy, regardless of whatever effect this 

may have on the kinetic energy. 

The displacement vector is partitioned as 

   
 
 









o

a

u

u
u      (11.18) 

and the modal vector    is also written 

   
 
 









o

a




 .     (11.19) 

The strain energy is  

    
2

1

2

1
 ukuU

T ¢   T
o

T
a uu «

   
   

 
 

















o

a

oooa

aoaa

u

u

kk

kk
 

         (11.20) 

or 

              ooo
T

oaoa
T

oaaa
T

a ukuukuukuU  22 . 

The condition that minimizes U with respect to  ou  is 

   
 

       0



oooaoa

o

ukuk
u

U
. (11.21) 

This is a constraint equation between active and omitted DOFs 

        aoaooo ukku
1

 ,   (11.22) 

or 

     aoao uGu  ,      oaoooa kkG
1

 ,  (11.23) 

so that  

  
 
 

 
 

    aSa
oa

a

o

a uTu
G

I

u

u
u 



















  

,  (11.24) 

with 

   
 
 

 
   

















 

oaoo

a

oa

a
S

kk

I

G

I
T 1

    
.  (11.25) 

Note that equation (11.21) is equivalent to the assumption that in free 

vibration problems there are no inertial forces at the o-DOFs. 

The eigenvalue problem (11.3) can be written 
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where 2  . 

The right hand side of equation (11.26) may be regarded as a load vector of 

inertial forces 
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If    0of , the lower partition yields 

          0 oooaoa kk  ,  

          aoaaoaooo Gkk  
1

,  (11.28) 

and 
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.  (11.29) 

Thus, the main assumptions in GR are: a) no external forces act on the o-

DOFs, and b) inertia can be neglected in the determination of internal forces. 

Using the reduction transformation (11.24), the strain energy is 

                   aa
T

aaS
T

S
T

a
T

ukuuTkTuukuU
2

1

2

1

2

1
 , (11.30) 

and the kinetic energy is 

                   aa
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umuuTmTuumuV 
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1

2

1

2

1
 , (11.31) 

where the reduced stiffness and mass matrices are 

         S
T

Sa TkTk  ,    (11.32) 

         S
T

Sa TmTm  .   (11.33) 

The reduced stiffness matrix is 

              oaooaoaaoaaoaaa kkkkGkkk
1

   (11.32, a) 

and the reduced mass matrix is 

               oaoooa
T

oaoaaoaaa GmmGGmmm  . (11.33, a) 

The eigenvalue problem (11.3) becomes 
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           aSaS TmTk    

or, premultiplying by  TST , and using (11.32) and (11.33), 

      aaaa mk   .   (11.34) 

After solving for eigenvalues   and eigenvectors  a , the mode shapes 

of the full problem (11.3) are obtained by expansion from equation (11.29). 

With a suitable choice of a-DOFs, acceptable accuracy may be obtained 

even with 10% of a-DOFs. Such success is generally attributed to Rayleigh’s 

principle, that a first order error in modal shapes gives only a second order error in 

estimated frequency. It will be shown that GR can be thought of as a discrete 

Rayleigh-Ritz reduction method, with  ST  the matrix of the basis vectors as 

columns and  au  the Ritz coordinates. 

Because oa nn  , inversion of  ook  approaches the inversion of  k . In 

practice, a formal inversion of  ook  is not performed. An alternative procedure is to 

directly use the Gauss elimination on the o-DOFs without partitioning  k , because 

Gauss elimination can be performed in any order. The bandwidth of the stiffness 

matrix will increase during the reduction process and problems of storage need be 

considered. 

11.2.1.2  Practical implementation of the GR method 

Instead of calculating the matrix  ak , it may be preferable to evaluate the 

flexibility matrix     1
 aa k . This is obtained solving the static problem for unit 

loads applied at each a-DOF in turn 
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,  (11.35) 

where  aI  is an identity matrix. 

Equations (11.35) can be written 

          aoaoaaa Ikk   ,   (11.36) 

          0 oooaoa kk  .   (11.37) 

Equation (11.37) yields 

            aoaaoaooo Gkk  
1

.  (11.37, a) 

This is similar with the constraint equation (11.22), which implies that the 

o-DOFs are free from inertial forces. 

Substitution of (11.37, a) into (11.36) yields 
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           aaoaaoaaa IGkk   , 

              11 
 aoaaoaaa kGkk , 

so that 
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.  (11.38) 

The matrix  X  can be used instead of  ST  in the reduction process. The 

columns of  X  are linear combinations of the trial vectors  ST . Hence, the use of 

 X  as trial vectors will give the same eigenvalues as  ST  even though they may 

produce different reduced matrices  ak  and  am . 

The essential steps of the GR method, as implemented in [11.12], are the 

following: 

1. Choose the a-DOFs. 

2. Compute the displacement vectors  X  solving 

      PXk  ,     (11.39) 

where       0a
T

IP   so that  iP  is a unit vector containing 1 in the row 

corresponding to the i-th a-DOF. 

3. Use the trial vectors  X  to form the reduced eigenproblem 

         0  redred mk ,  (11.40) 

where 

        XkXk
T

red  ,        XmXm
T

red  . (11.41) 

4. Solve the reduced eigenproblem. 

5. Use the vectors    to calculate mode shapes of the full problem 

                XkTT aaaSaS  . (11.42) 

The use of the matrix  X  will give the same eigenvalues as  ST  but 

different reduced matrices. This is a drawback when a reduced mass matrix is 

needed for cross-orthogonality checks. 

Because 

                    aaS
T

S
T

a
T

red kTkTkXkXk 
 1

,   (11.43) 

                   aaaaaa
T

red mkmkXmXm 
 11

,     (11.44) 

the reduced eigenproblem (11.40) can be written 
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           aaaa m ,  (11.45) 

or, premultiplying by  ak , 

        aam .   (11.46) 

Using the transformation      aak    we obtain (11.34). 

11.2.1.3  Selection of active DOFs 

Different qualitative criteria have been used in the past for the selection of 

a-DOFs. We mention only a few: 

“Select the active DOFs associated with large mass concentrations and 

which are reasonably flexible with respect to other mass concentrations and fixed 

constraints” [11.13]. 

“Select the DOFs that have the largest entries in the mass matrix. Select the 

DOFs that have the largest movements (components of the eigenvector) in the modes 

of interest” [11.14]. 

“Select the active DOFs in the zones of maximum strain energy and which 

strongly contribute to the total kinetic energy” [11.15]. 

“The chosen DOFs must always be translations as opposed to rotations. In 

the case of a complicated assembly, the a-DOFs are situated in the most flexible 

regions” [11.16]. 

Hence, good results can be obtained by eliminating the DOFs for which the 

inertia forces are negligible compared to the elastic forces.  

The automatic selection of a-DOFs has been later suggested [11.8] based 

on small values of the ratio iiii mk  between the diagonal elements of the stiffness 

and mass matrices for the i-th coordinate. 

The GR method is valid for frequencies which are smaller than a cut-off 

value, c , equal to the smallest eigenfrequency of the o-DOFs eigenvalue problem 

      oooooo mk  2 .   (11.47) 

Kidder’s cut-off frequency c  should be approximately three times the 

highest significant frequency so that all the significant mode shapes are preserved 

[11.10]. Improper selection neglecting this condition may result in missing 

frequencies in the reduced eigenvalue problem. 

The lower partition of equation (11.26) yields the constraint equation 

             aoaoaooooo mkmk  212 


.  (11.48) 
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The inverse term is expanded as 

            ...kmkkmk oooooooooooo 
 112112  , (11.49) 

and the terms in 4  are ignored 

                   112112 
 oooooooooooooo kmkImkIk  .   (11.50) 

GR is valid for those natural frequencies for which the infinite series in 

equation (11.49) converges. If 1  is the smallest eigenfrequency of the o-DOF 

problem 

           0
1

12 


oooooo mkI  ,  (11.51) 

then convergence is achieved for 1  . 

The procedure to select the a-DOFs is the following: 

1. Let c  be a cut-off frequency which is higher than all the significant 

frequencies. 

2. Find a DOF for which the ratio iiii mk  is the largest. If several DOFs have 

the same ratio, then the one with the smallest index is considered in the next step. 

3. If this ratio is larger than 2
c , eliminate this DOF from the mass and stiffness 

matrices by GR. 

4. Apply steps 2 and 3 to the reduced matrices obtained in step 3. 

5. Repeat steps 2 to 4 until the largest ratio found in step 2 is less than or equal 

to 2
c . 

The DOFs associated with the reduced matrices are the a-DOFs. 

The main features of the algorithm are: a) elimination of one o-DOF at a 

time, b) well adapted to structures with uniform geometry and mechanical 

characteristics, c) yields bad results for structures with irregular mass distribution 

when it concentrates a-DOFs in regions having significant masses, and d) if several 

DOFs have the same iiii mk  ratio, the elimination is dependent on the node 

numbering. 

The Stepwise Guyan Reduction (SGR) is illustrated in Example 11.1. 

To account for the effect of each eliminated DOF, say the p-th DOF, on the 

remaining DOFs, the diagonal elements of the stiffness and mass matrices can be 

modified as follows [11.17] 

 ppipiiii kkkk 2 ,   ppppipiiii mkkmm
2

 . (11.52) 
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11.2.1.4  Iterative Guyan reduction 

Results of GR can be improved by iteration [11.12]. One can compute 

improved trial vectors in (11.39) using the inertial forces generated by the 

approximate eigenvectors computed by the original GR method as the basis for the 

trial vector 

        XmP  .    (11.53) 

 They can be used in GR and steps 2 through 5 repeated until the eigenvalues 

have converged. 

These are essentially simultaneous inverse iterations and hence should 

improve the eigenvectors. 

11.2.2  Improved Reduced System (IRS) method 

Dynamic effects can be approximately accounted for by considering the 

inertia forces as external forces acting on the o-DOFs. They can be statically reduced 

to the a-DOFs. IRS allows for the direct inclusion of the inertial effects of the 

omitted DOFs [11.6]. 

IRS is an improved static condensation [11.5], involving minimization of 

both the strain energy functional and the potential energy of applied forces. Like GR 

it does not require a solution of the full system eigenproblem. IRS is less sensitive to 

the number and location of a-DOFs. IRS only approximates the full system 

dynamics in the a-modes and necessitates extra a-DOFs to preserve accuracy. It 

produces a very robust TAM [11.18]. 

The equation of motion for free vibrations is  
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. (11.54) 

Expanding the upper and lower partitions 

              0 oaoaaaoaoaaa ukukumum  , (11.55) 

              0 oooaoaoooaoa ukukumum  . (11.56) 

From equation (11.56), neglecting the inertial terms, we obtain 

            aoaaoaooo uGukku 
1

,  (11.57) 

        oaoooa kkG
1

 .   (11.58) 

 Equations (11.54) 

        0 ukum     (11.59) 
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have the solution 
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.   (11.60) 

Substituting (11.60) in (11.59) and premultiplying by  T
ST  gives 

        0 aaaa ukum  ,   (11.61) 

where 

        S
T

Sa TmTm  ,        S
T

Sa TkTk  .  (11.62) 

Substituting the acceleration vector from (11.61) 

       aaaa ukmu
1

 ,   (11.63) 

and the acceleration vector calculated from (11.58) 

              aaaoaaoao ukmGuGu  1
 ,  (11.64) 

into (11.56) written as 

              aoaoooaoaooo ukumumku 
 1

, (11.65) 

a new constraint equation is obtained between the o-DOFs and the a-DOFs 

        a
)(

oao uGu 1 ,    (11.66) 

where 
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1111 

 . 

The reduction to a-DOFs is now defined by 
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.  (11.67) 

The IRS transformation matrix is [11.6] 

   
 
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.    (11.68) 

where  oaG ,  am  and  ak  are obtained from GR. 

Equation (11.68) can also be written 
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If equation (11.56) is written 

          ooooaoa fukuk  , 

           oooaoao fkuGu
1

 ,  (11.70) 

the inertia forces acting on o-DOFs are approximated as 

              aaaoaoooao ukmGmmf
1

 . (11.71) 

The new improved mass and stiffness matrices are 
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   (11.72) 

The matrix  ak  produces a slight adjustment of the stiffness matrix, 

while  am  produces a better mass distribution, which will produce a better set of 

eigenpairs, which is more accurate than that obtained using GR. 

Stepwise Improved Reduction System (SIRS) method 

In order to reduce the size of the eigenvalue problem, the coordinates in 

(11.59) can be eliminated one at a time. The DOF for which the ratio iiii mk  of the 

diagonal elements of  m  and  k  is highest, is denoted ou  and moved into the 

bottom location for elimination [11.11]. 

Equation (11.59) can be written 

                 0 uPPkPuPPmP
TTTT  , (11.73) 

where  P  is a permutation matrix of the form 

            jnjj eeeeeP  111  , 

in which   'se j  are columns of the identity matrix. 

Equation (11.73) can be partitioned as 
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, (11.74) 



                                                                                           MECHANICAL VIBRATIONS 252 

where ou , ook  and oom  are scalars, and  au  is the column vector of the remaining 

a-DOFs. If several DOFs have the same ratio iiii mk , then the one with the smallest 

index is considered first. If this ratio is greater than a cut-off frequency squared, 2
c , 

then the corresponding DOF is eliminated. 

In the SIR method, the reduction to a-DOFs is defined by (11.67) 
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After one reduction step, the reduced homogeneous equation of motion is 

        011  aa ukum  ,   (11.75) 

where 

         111 TPmPTm
TT

 ,            111 TPkPTk
TT

 . 

The SIR transformation matrix is of the form 

              
n

TPTPTPT 12111  ,     (11.76) 

and the full reduced system matrices are given by 

       TmTm
T

red  ,         TkTk
T

red  .  (11.77) 

The physical coordinate reduction is defined by 

     reduTu  ,    (11.78) 

where  redu  contains the selected a-DOFs of the reduced model. 

At each reduction step, the effect of the removed o-DOF is redistributed to 

all the remaining a-DOFs, so that the next reduction will remove the o-DOF with the 

highest iiii mk  ratio in the reduced mass and stiffness matrices. The procedure is 

applied until the highest ratio iiii mk  is equal to or less than 2
c . In this way, the 

minimum number of a-DOFs is automatically determined, as well as their location. 

Modal vector back-expansion is carried out using the Inverse SIR (ISIR) 

method based on the transformation (11.78), where  T  is given by (11.76). 

11.2.3  Iterative Improved Reduced System (IIRS) method 

The IRS method is based on the transformation matrix  IRST  which 

utilizes the reduced matrices  am  and  ak  from GR. 
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An improvement can be made [11.7] using    IRS
a

i
a mm   and 

   IRS
a

i
a kk   from (11.72) in a new transformation matrix 
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where 
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i
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i
oaoooaoooaoo

)i(
oa kmGmmkkkG

1111   . 

The iteration process can be continued until the reduced set of equations 

reproduces the eigensystem to within some specified convergence criterion. The 

number of correctly recalculated modes is less than half the order of the reduced 

model. 

Stepwise Iterated Improved Reduction (SIIR) 

If substitution of accelerations (11.64) and (11.65) into equation (11.74) is 

repeated, for the subsequent iterations the constraint equation becomes [11.11] 

    a
)i(

oao uGu 1 , 

where 
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The reduction to a-DOFs becomes 
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where the subscript i denotes the i-th iteration. 

After one reduction step, the SIIR homogeneous equation of motion is 

        0 aiai ukum  , 

where 

         i
TT

ii TPmPTm  ,            i
TT

ii TPkPTk  . 
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Generally, the SIIR method converges monotonically to a reduced model 

that preserves the lower eigenvalues and the corresponding reduced eigenvectors of 

the full system [11.18]. 

After solving the reduced eigenvalue problem, equation (11.78) is used in 

the Inverse SIIR (ISIIR) method to expand the a-DOF vector to the size of the full 

problem, using the transformation matrix 

              
niii TPTPTPT 

21
 ,    

where subscript i is the number of iterations in the SIIR method.  

A measure of the accuracy of the expanded mode shapes is given by the 

relative mode shape error 

            .= FEMexpandedFEM //    

 Numerical simulation results obtained for two simple structural systems are 

presented in the following. For better comparison of results, the stepwise reduction 

has been applied as in [11.8], without imposing a cut-off frequency, selecting a 

priori the number of a-DOFs. 

Example 11.1 

 Figure 11.2 shows the planar beam system of Example 5.11 with 
3kg/m 7850= , 

211N/m102.1= E , 
2-4m103.73= A , 

4-7 m101.055= I . 

Compute the first 10 modes of vibration using SGR, SIR and SIIR. 

 

Fig. 11.2 
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 The first 12 planar mode shapes are reproduced in Fig. 11.3. 

   

   

   

   

Fig. 11.3 

 The first ten natural frequencies are given in Table 11.1. The FEM values 

listed in the second column correspond to the full eigenvalue problem.  

 Columns three to five list natural frequencies computed using SGR, SIR and 

SIIR (5 iterations) for a selection of 10 a-DOFs using the stepwise K/M elimination 

criterion. The table shows a good reproduction of the low frequency spectrum.  

 Columns six to eight list the relative error of expanded mode shapes by 

Inverse Stepwise Reduction. For some modes, the iterations in SIIR (and ISIIR) do 

not improve on the values in SIR (and ISIR). Location of a-DOFs by the three 

methods is marked in Fig. 11.1 by arrows. 
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Table 11.1.  Natural frequencies and mode shape errors for the planar frame of Fig. 11.2 

Mode Natural Frequency, Hz Mode Shape Error, % 

Nr FEM SGR SIR SIIR ISGR ISIR ISIIR 

1 35.996 36.024 35.996 35.996 1.08 0.004 0.0000 

2 43.478 43.537 43.478 43.478 1.57 0.008 0.0000 

3 89.786 90.407 89.786 89.785 5.18 0.066 0.0005 

4 132.60 133.98 132.61 132.60 6.78 0.69 0.0066 

5 198.65 203.33 198.69 198.65 12.42 1.21 0.38 

6 210.48 216.82 210.64 210.48 15.19 3.91 0.37 

7 247.82 254.84 248.05 247.84 16.97 3.56 2.07 

8 264.79 277.12 264.89 264.84 21.07 2.19 5.54 

9 312.60 326.36 312.85 326.66 24.79 4.23 132.4 

10 327.76 337.91 328.86 356.90 22.89 9.36 137.9 

Example 11.2 

 Figure 11.4 shows a simplified FEM of a planar truss structure for which 
3kg/m 2800= , 

211N/m100.75= E , 
4m .07560=I , 2m .0060=vertA , 

2m .0040=horA , 
2m .0030=diagA . It is modelled with 48 Bernoulli-Euler beam 

elements with consistent mass matrices and 44 nodes with 3 DOFs per node. The 

structure is constrained to vibrate only in its own plane. 

  

Fig. 11.4  

 Table 11.2 lists the natural frequencies and the full size mode shape relative 

errors for the first eight modes of vibration, for a selection of 8 a-DOFs, using the 

K/M elimination criterion. Again, the accuracy is very good for the SIIR method 

with only 5 iterations and for frequencies above the horizontal lines, which indicate 
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the location of the natural frequency of the last eliminated o-DOF system (Kidder's 

limit). Mode shape expansion by the ISIIR method gives excellent results. Figures 

11.4, a, b, c show the location of a-DOFs by the three reduction methods [11.11].  

Table 11.2.  Natural frequencies and mode shape errors for the planar truss of Fig. 11.4 

 Natural Frequency, Hz Mode Shape Error, % 

Mode 

Nr. 

FEM SGR 

(K/M) 

SIR 

(K/M) 

SIIR 

(K/M) 

ISGR 

(K/M) 

ISIR 

(K/M) 

ISIIR 

(K/M) 

1 45.151 45.185 45.151 45.151 0.24 0.0019 0.0000 

2 79.070 79.776 79.070 79.070 1.55 0.053 0.0001 

3 227.72 243.72 228.66 227.71 19.04 4.96 0.0215 

4 249.94 269.33 250.73 249.94 20.09 4.52 0.024 

5 365.63 405.72 371.74 365.66 33.48 22.78 1.83 

6 444.03 558.18 499.19 448.49 104.99 92.43 24.01 

7 452.83 577.83 516.41 466.89 140.64 119.62 62.45 

8 476.83 854.48 546.85 508.47 133.47 134.02 87.68 

 For comparison, Figures 11.4, d, e, f, show the location of a-DOFs by the 

three reduction methods, using the Effective Independence (EfI) method presented in 

Section 12.5.1.2.  

 

       Fig. 11.5 
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 Figure 11.5 displays the variation of the iiii mk  ratio during the stepwise 

reduction process from 126 to 8 a-DOFs (right to left). 

11.2.4  Dynamic condensation 

 Equation (11.26) may be written as  
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, (11.81) 

and may be solved for in terms of  au  

               aoaoaooooo umkmku 212  


, 

or 

               aoaoaoooo udGdIu 212  


, (11.82) 

where 

       oooooo mkd
1

 ,        oaoooa mkd
1

 . 

 As long as   12 ood  for some valid norm, a first order binomial 

expansion of equation (11.82) will yield 

              aoaoaoooo udGdIu 22   , 

                  a
d
oaaoaoaoooao uGudGdGu  2 . (11.83) 

 This leads to a reduced set of equations comparable to equations (11.34) 

      d
a

d
a

d
a

d
a mk  2 ,   (11.84) 

where 

       d
oaaoaa

d
a Gkkk  ,         d

oaaoaa
d
a Gmmm   (11.85) 

are functions of 
2 . 

 To reduce equation (11.84) to a simpler form, in which the eigensolution 

may be easily obtained, the 
2  term in  d

oaG may be set to a pre-selected value 

2
f . The transformation matrix for the Dynamic Condensation method is [11.19] 

           oaoaoofoa
d
oa dGdGG  2 , 



11. DYNAMIC MODEL REDUCTION 259 

             oaoooaoofoa
d
oa GmmkGG 

12 . (11.86) 

The reduction to a-DOFs is defined by 
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where the transformation matrix 
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 The reduced eigensystem will produce the best approximation to the full 

system for modes closest to 2
f  and will deteriorate as the frequency moves away. 

Use of this method over a broad frequency range is impractical. 

11.2.5  Iterative dynamic condensation 

 The Iterative Dynamic Condensation (IDC) is an extension of the GR 

method which requires neither matrix inversion nor series expansion. 

 Equation (11.81) can be written  
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         (11.89) 

 From the lower partition 

          aoaaoaooo uGuDDu 
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,  (11.90) 

so that  
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 From conditions of energy conservation, the reduced matrices are  

       D
T

D TmTm  ,         D
T

D TkTk  ,  (11.92) 

giving a condensed dynamic matrix 

        mkD 2 .    (11.93) 

 The algorithm proposed by Paz [11.20] starts by assigning an approximate 

value (e.g., zero) to the first eigenfrequency 1 , applying the dynamic condensation 

to the matrix      mkD 2
11   and then solving the reduced eigenproblem to 
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determine the first and second eigenfrequencies, 1  and 2 , and the first 

eigenvector. Next, the dynamic condensation is applied to the matrix 

     mkD 2
22   to reduce the problem and calculate the second the third 

eigenfrequencies, 2  and 3 , and the second eigenvector. The process continues 

this way, with one virtually exact eigenfrequency and eigenvector, and an 

approximation of the next order eigenfrequency calculated at each step. 

 The following three steps are executed to calculate the i-th eigenfrequency 

i  and eigenvector  i  as well as an approximation of the eigenvalue of the next 

order 1i . 

 Step 1. The approximation of i  is introduced in equation (11.89) written 

with the o-set in the upper partition 
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 Applying the partial Gauss-Jordan elimination of o-set coordinates, equation 

(11.94) is transformed into  
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in which 

        ioaiooioa DDG 
1

 ,        iiii mkD 2 . (11.96) 

 Step 2. The reduced mass matrix  im and the reduced stiffness matrix 

 ik are calculated from equations (11.92) as 

       i
T

ii TmTm  ,          iiii mDk 2 ,  (11.97) 

where 

          TT

ioaai GIT  .   (11.98) 

 Step 3. The reduced eigenproblem 

           02 
iaiii mk    (11.99) 
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is solved to obtain an improved eigenfrequency i , its corresponding eigenvector 

 
ia  and also an approximation for the next order eigenvalue 1i . 

 This three-step process may be applied iteratively. The value of i  obtained 

in step 3 may be used as an improved approximate value in step 1 to obtain a further 

improved value of i  in step 3. The convergence is obtained in 2 to 3 steps. 

 Paz’s condensation method has two drawbacks: a) when an inadequate a-set 

is used, some estimated modes will converge to higher modes, missing intermediate 

values; b) the procedure does not produce mass and stiffness matrices for a reduced 

model; for each approximate vibration mode there is another transformation matrix 

and therefore a different reduced model; and c) calculation of the reduced mass 

matrix involves the multiplication of three matrices of dimensions equal to the total 

number of DOFs. 

 In the Modified Dynamic Condensation method (Paz, 1989), the reduced 

stiffness matrix  ik is calculated only once, by simple elimination of on  

displacements in equation (11.89), after setting 0 . The reduced mass matrix is 

calculated from 

         ii

i

i Dkm 
2

1


,   (11.100) 

where  iD is given in the partitioned matrix of equation (11.95). 

11.3  Modal coordinate reduction methods 

Modal reduction methods use the FEM mode shapes to reduce the FEM 

and thus require previous solution of the complete eigenvalue problem. They provide 

exact frequencies and mode shapes for the targeted modes, and outperform the 

physical coordinate reduction methods which need too many sensors, even when 

only a small number of modes are targeted for identification and correlation. While 

all reduction error is eliminated from Test/TAM correlation analysis, robustness of 

these methods is dependent upon the fidelity of the FEM to the test article. 

11.3.1  Definitions 

The complete displacement vector    nuu   is partitioned into two 

complimentary sets:  au - active DOFs (retained in the TAM, or instrumented) and 
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 ou - omitted DOFs, and in the contribution  tu - from the target modes and 

 ru - from the residual (not targeted) modes 

  
 
 

   
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u
u . (11.101) 

The complete coordinate transformation is 

      qu  ,     (11.102) 

where    is the full modal matrix (11.5), solution of (11.4), and  q  is the vector 

of modal coordinates. 

Equation (11.102) can be partitioned as 
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        (11.103) 

and also as 

 

 

 

 
 

 

(11.104) 

 We assume that there are an  active DOFs, on  omitted DOFs, tn  target 

DOFs, rn  residual DOFs, and n is the order of the model 

   rtoa nnnnn  .    (11.105) 

11.3.2  Modal TAM and SEREP 

Based on an idea from [11.21], the Modal TAM was suggested by Kammer 

[11.22]. Originally formulated as a global mapping technique used to develop 
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rotational DOFs for modal test data [11.23], a System Equivalent 

Reduction/Expansion Process (SEREP) was developed by O’Callahan [11.24].  

The displacements corresponding to the target modes can be written 

    
 
 

 
 

 t

to

ta

to

ta
t q

u

u
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



.  (11.106) 

From the upper partition 

       ttata qu  .    (11.107, a) 

If ta nn   

        ta
g

tat uq  ,    (11.108) 

where the Moore-Penrose generalized inverse is of rank tn ,      tta
g

ta I , 

          T
tata

T
ta

g
ta 

1
 .  (11.109) 

Substitution of (11.109) into the lower partition 

       ttoto qu      (11.107, b) 

gives 

          ta
g

tatoto uu  .   (11.110) 

The full system displacement vector (11.106) is 

  
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. (11.111) 

The transformation matrix of the SEREP is 

           
    















g
tato

g
tatag

tatSEREPT



 . 

If  ta  is full rank, then      a
g

tata I , and the transformation 

matrix of the Modal TAM, also referred to as SEREPa (non-smoothing SEREP), is 

    
 

   
    1






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





 tatg

tato

a
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I
T 
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. (11.112) 

The test (instrumented) DOFs are fixed as active DOFs. 
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Denoting A-analytic and X-experimental, equation (11.111) gives 

            
XtaaXta

g
tataAta uSuu   , 

where    aa IS  is a projection matrix which does the scaling of experimental 

vectors. The expansion of experimental vectors is defined by  

       
XtaaAta S   . 

If ta nn   and providing that the columns of  ta  are independent, 

     aa IS  ,      1
 ta

g
ta  , 

and the SEREP becomes the Modal TAM. 

The reduced mass and stiffness matrices are 

                   
                      .kTkTk

,mTmTm

tat
T

tatat
T

t
T

tam
T

mat

ta
T

tatat
T

t
T

tam
T

mat

121

11












 

        (11.113) 

The eigensystem of  atm  and  atk  has the same eigenvalues as the 

original system. The eigenvectors 

       tamt T   . 

When ta nn   the reduced system matrices are 

  
     
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It can be shown that, even though the reduced system matrices  atm  and 

 atk  are rank deficient (rank tn , order an ), the reduced eigensolution will produce 

the proper eigensystem once the null values have been removed [11.22].  

Advantages of the SEREP are: a) the arbitrary selection of target modes 

(that are to be preserved in the reduced model); b) the quality of the reduced model 

is not dependent upon the location of the selected a-DOFs; c) the frequencies and 

mode shapes of the reduced system are exactly equal to the frequencies and mode 

shapes (at the selected locations and for the selected modes) of the full system 

model; d) the reduction/expansion process is reversible; expanding the reduced 

system mode shapes back to the full system space develops mode shapes that are 

exactly the same as the original mode shapes of the full system model; and e) the 
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FEM mode shapes and frequencies predicted by the Modal TAM can be precisely 

controlled, which is important in the case of large space structures. 

Disadvantages of SEREP are: a) while the Modal TAM is numerically very 

accurate, it may not be robust; b) use of SEREP as a Modal TAM in test-analysis 

orthogonality and cross-orthogonality computations can result in larger off-diagonal 

terms than the corresponding values produced by a less accurate Static TAM; and c) 

the sensitivity to discrepancies between test and FEM mode shapes is due to the 

Modal TAM poor representation of residual modes (not targeted for identification 

and correlation).  

The main differences between the SEREP and the GR can be summarized 

as follows. In GR the transformation matrix  ST  is based solely on the stiffness 

matrix so that the inertial forces of the full system are not preserved when the full 

system is mapped down to a reduced space. In SEREP, the matrix  mT  is based on 

the analytical modal vector set which inherently contains information concerning the 

inertial forces. In GR, the modal matrix formed from the eigensolution of the a-DOF 

system is only an approximation of the modal matrix  t  that is formed from the 

first an  eigenvectors of the full system. The quality of the estimation of eigenvalues 

and modal matrix depends on the selection of the a-DOFs. 

11.3.3  Improved Modal TAM 

The Improved Modal TAM [11.25] combines the exact representation of 

the FEM target modes with a better representation of the residual modes. This makes 

it less sensitive to differences between test mode shapes (corrupted by noise and 

other modes) and analysis mode shapes 

The full displacement vector can be explicitly expressed in terms of target 

and residual mode contributions 

            rrttrtn qquuu   .  (11.114) 

The modal reduction for the target modes can be written 
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Similarly, the modal reduction for the residual modes can be written 
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,  (11.116) 

where  rT  is the modal transformation matrix for the residual modes and 
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          Trara
T

ra
g

ra 
1

 . 

Equations (11.115) and (11.116) are exact. By contrast, the Modal TAM 

approximation to the full displacement vector  û , in which only target modes are 

used in the reduction, is 
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The displacement vector for the a-DOFs 

       rataa uuu      (11.118) 

can be written using the identity 

               aratarataa uu
1  .  (11.119) 

Separating  tau  and  rau   

                         arataraaratataa uuu
11

00
   . 

         (11.120) 

The target active DOF displacement vector is 

                 aTaratatata uPuu 
1

0  ,  (11.121) 

where 

              1
0

 ratataTP    (11.122) 

is a projector matrix of rank tn . 

From equation (11.122) 

             0tarataTP     (11.123) 

so that 

      tataTP   ,      g
tataTP  ,  (11.124) 

       0 raTP  .    (11.125) 

From equation (11.120), the residual active DOF displacement vector is 

                 aNaratarara uPuu 
1

0  , (11.126) 

where 
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              1
0

 rataraNP    (11.127) 

is the projection onto the null space of  TP  along its column space. 

From equation (11.127) 

             rarataNP   0   (11.128) 

so that 

      raraNP   ,     g
raraNP   ,  (11.129) 

       0taNP  .    (11.130) 

The above equations show that the projectors  TP  and  NP  are 

complementary 

       aNT IPP  ,    (11.131) 

where  aI  is an identity matrix. 

Using equations (11.121) and (11.126), equation (11.118) becomes 

            aNaTrataa uPuPuuu  .  (11.132) 

The complete a-set TAM approximation to the full FEM displacement 

vector is given by 

            rartamrt uTuTuuû  , 

               aIMaNrTm uTuPTPTû  . (11.133) 

The transformation matrix of the Improved Modal TAM reduction method 

is 

           NrTmIM PTPTT  .  (11.134) 

The reduced mass and stiffness matrices are 
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Equations (11.135) can also be written 
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where 
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T

mat TmTm  ,         m
T

mta TkTk    (11.138) 

are the Modal TAM mass and stiffness matrices, and 

       r
T

rr TmTm  ,         r
T

rr TkTk  ,  (11.139) 

in which  m  and  k  are the FEM mass and stiffness matrices. 

If equations (11.136) and (11.137) are pre- and post-multiplied by  ta , 

the following expressions result  
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where  tI  is an identity matrix and ¡ « is the diagonal matrix containing the 

target mode eigenvalues. Therefore, the Improved Modal TAM exactly predicts the 

target modes and frequencies as does the Modal TAM. 

If equations (11.136) and (11.137) are pre- and post-multiplied by  ar , 

we get  
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  (11.141) 

which confirm the residual dynamics. The Improved Modal TAM null space 

dynamics comes exclusively from the residual modes, as desired. 

The residual subspace can be generated using the target subspace and the 

flexibility matrix of the system. Starting from the orthogonality and mass 

normalization condition 

        k
T ¡ 2 « 

and partitioning the modal vectors into target and residual sets, we get 

           
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 . 

The residual modes satisfy the equation 
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 r ¡ 2
r « 1  T

r =   
1

k  t ¡ 2
t « 1  Tt .  (11.142) 

11.3.4  Hybrid TAM 

The first Modal TAM with residuals, referred to as the Hybrid TAM, has 

been introduced Kammer [11.26] based on an idea from [11.21]. The approach is 

based on equation (11.133) which is written 

      ahT uTû  .    (11.143) 

The Hybrid TAM transformation matrix is 

           NSTmTh PTPTT  ,   (11.144) 

where  mT is the modal TAM transformation matrix and  ST is the static 

condensation (GR) transformation matrix (replaces  rT ). 

Using equation (11.131), the transformation matrix can be simplified to  

           TSmSTh PTTTT  .  (11.145) 

The Hybrid TAM considers an oblique projector 

         ta
T

tataT mP     (11.146) 

instead of that given by equation (11.122). It requires prior generation of the Modal 

TAM mass matrix  tam . 

11.3.5  Modal TAMs vs. non-modal TAMs 

A comparison of the performance of the Test-Analysis Models presented 

so far is of interest at this stage. 

In GR (Static TAM), the transformation matrix  ST is based solely on the 

stiffness matrix  k . Inertial forces of the full system are not preserved when the full 

system is mapped down to a reduced space. 

The modal matrix formed from the eigensolution of the a-DOF system is 

only an approximation of  t  that is formed from the first ‘a’ eigenvectors of the 
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full system. The quality of the estimation of eigenvalues and modal matrix depends 

on the selection of a-DOFs. 

GR does capture eigenfrequencies to a good extent. The constraint modes, 

that are a linear combination of the eigenvectors of the  k  matrix alone (inertia 

discarded), span the lower modes of the system rather well, with accuracy 

deteriorating with increasing frequency. 

GR and IRS TAM are approximations of the FEM dynamics. They require 

a relatively large number of active (instrumented) DOFs to obtain a reasonable level 

of accuracy, especially when the kinetic energy is spread out over a large portion of 

the structure. Selection of a-DOFs is an important issue.  

In SEREP and MODAL TAM, the transformation matrix  mT is based on 

the analytical modal vector set, which inherently contains information concerning 

the inertial forces.  

The Modal TAM represents the target modes exactly but does a poor job 

with the residual modes.  

The Hybrid TAM, which incorporates static modes along with the target 

modes, predicts all target modes exactly and also the residual frequencies well. 

IMTAM predicts target modes exactly and residual modes reasonably, 

since the linear transformation used has the residual modes represented as their 

linear combination. The higher modes are in error, as they are weighted very low due 

to the inversion   1
k . 

Modal TAM eliminates reduction errors. IMTAM improves the robustness 

of Modal TAM including the residual modes  ar . 

The number of residual modes that can be used in a TAM generation is 

ta nn  . There are two possibilities: a) use a projection matrix that divides the 

an dimensional space, containing the a-set dynamics, into two complementary 

spaces (column space of  at  and the complementary null space); and b) stack 

directly some residual modes with the target modes in the modal matrix when 

constructing the generalized inverse. In order to ensure properly ranked matrices, 

art nnn  . 

The difference in performance of Hybrid TAM and IMTAM is marginal. It 

is reported that, in a cross-orthogonality test, half of the off-diagonal terms of the 

cross orthogonality matrix XOR calculated via IMTAM were lower, and half were 

larger than the corresponding terms determined via the Hybrid TAM.  

The IRS-TAM performs better in cross-orthogonality tests as the Hybrid 

TAM. 
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11.3.6  Iterative Modal Dynamic Condensation 

An iterative dynamic condensation method was presented in [11.27]. It 

starts with a trial condensation matrix to form a reduced eigenvalue problem. The 

eigensolution obtained in an iteration step is used to improve the condensation 

matrix by taking advantage of a particular form of the orthogonality conditions of the 

eigenvectors. No Gaussian elimination or matrix inversions are required to upgrade 

the condensation matrix. 

The generalized eigenvalue problem (11.4) 

    k    m  Λ ,   (11.147) 

can be transformed into the standard form 

    S    Λ ,    (11.148) 

using the transformation 

      
1

 Y ,    (11.149) 

where  Y  is obtained from the Cholesky decomposition of  m  

      YYm
T

     (11.150) 

and the transformed stiffness matrix is  

        1
 YkYS

T
.   (11.151) 

Equation (11.148) can be written in partitioned form 
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. (11.152) 

Equation (11.152) is equivalent to four matrix equations 

        oaaoaaaa SS   aa ¡ a «,  (11.153) 

        ooaoaoaa SS   ao ¡ o «,  (11.154) 

        oaoooaoa SS   oa ¡ a «,  (11.155) 

        ooooaooa SS   oo ¡ o «.  (11.156) 

The eigenvectors in    are normalized to have unitary Euclidean norm 
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 . (11.157) 

Equation (11.157) is equivalent to four normality conditions 
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         oa
T

aoaa
T

aa   aI , 

         oo
T

aoao
T

aa   0 ,  (11.158) 

         oa
T

ooaa
T

ao   0 , 

         oo
T

ooao
T

ao   oI . 

Introduce two condensation matrices  R  and  R̂  so that 

      aaoa R   ,    (11.159) 

      ooao R̂   ,    (11.160) 

where 

      1
 aaoaR  ,          1

 ooaoR̂  .  (11.161) 

Substitution of (11.159) and (11.160) in (11.158) yields 

             0 oo
TT

aaoo
T

aa RR̂  , 

          0 oo
TT

aa RR̂  , 

    T
RR̂  , 

so that equation (11.160) can be written 

      oo
T

ao R   .    (11.160, a) 

From (11.152), the eigenvalue problem corresponding to the a-set is 
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and for the o-set 
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. (11.163) 

If the condensation matrix  R  were known, equations (11.162) and 

(11.163) could be reduced to their condensed forms 
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.   (11.164) 

Using (11.164) in (11.162) and premultiplying by     TT
a RI yields 
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or 

          aaaa mk     aΛ ,  (11.165) 

where the condensed stiffness and mass matrices  k  and  m  are 

                 RSRSRSRSk oo
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oa
T

aa  , (11.166, a) 

         RRIm
T

a  .    (11.166, b) 

Similarly, defining 
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using (11.167) in (11.163) and premultiplying by     T
oIR yields the 

following condensed eigenproblem 

          oooo mk    oΛ    (11.168) 

where 
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TT
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T
oaoo RSRRSRSSk  , (11.169, a) 

          To RRIm  .   (11.169, b) 

Equations (11.165) and (11.168) define the two condensed complementary 

eigenvalue problems. Solving them for  aa  and  oo , the complete eigenvector 

matrix    can be obtained from  
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.  (11.170) 

For this one needs to know  R . The formal definition (11.161) cannot be 

used since the eigenvectors are not known a priori. It can be calculated iteratively. 

From equation (11.155), assuming the right side zero, 

        oaoooaoa SS   ,   (11.171) 

wherefrom, comparing with (11.156), we get 

                00010
aaaaoaoooa RSS  


.  

The initial approximation for  R  is obtained as 
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       oaoo SSR
10 

 .   (11.172) 

Using (11.172) in (11.166) and (11.165) one obtains 
  0

aΛ  and   0
oa . 

This approximate solution can be used to obtain an improved  R , as 

described below by (11.178). 

Consider equation (11.155) again, but now with the right side not equal to 

zero 

   oaooS   oa  aΛ    aaoaS  .  (11.173) 

 The first term in equation (11.173) is the correction term to be added to 

(11.171) to improve the original estimate. Replacing  oa    aaR   we get 

   oaooS     aaR   aΛ    aaoaS  , 

    1
 oooa S     aaR   aΛ    aaoaS  . (11.174) 

 Post-multiplying by   1
aa   

       11 
 ooaaoa SR      aaR   aΛ    oaaa S

1
 . (11.175) 

 To avoid the inversion of  aa  we use the orthogonality property 

        
aa

T
aa k   aΛ ,   (11.176) 

         aa
T

aaaa k    aΛ   1
aa , 

which is substituted in (11.175) yielding 

      1
 ooSR           oa

T

aaaa SkR  
. (11.177) 

 If the actual condensation matrix  R  and the modal submatrix  aa  are 

used in (11.177), the equality is identically satisfied. One can also use (11.177) to 

define a recursive relationship 

 
     11   ooSR                







 
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T

aaaa SkR   . (11.178) 

The iterative calculation starts with   0R , then determines 

  0

aa 
  0R 

  1k , 
  1m 

  1

aa , 
  1

aΛ    2R until the desired 

convergence is achieved. The convergence criterion can be in terms of a tolerance 

limit on the eigenvalues  aΛ  calculated at two consecutive iteration steps. 
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From (11.168) we obtain  oo  and from (11.170) the full modal matrix 

  . 

Note that the Iterative Dynamic Condensation is not a TAM. 

11.4  Hybrid reduction methods 

Hybrid reduction methods are based on the representation of the physical 

DOFs on a subspace of independent base vectors. The generalized coordinates 

consist of a set of an  ‘active’ physical coordinates,  au , and a set of pn  (modal) 

coordinates,  pq . 

11.4.1  The reduced model eigensystem 

The full system displacement vector is 
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 (11.179) 

so that the transformation matrix is 
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The reduced dynamic model is described by the equation of the undamped 

free motion 

          0 xkxm HH  ,   (11.181) 

where 

       H
T

HH TmTm  ,           H
T

HH TkTk  , (11.182) 

or, using (11.180), 
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



 
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pppa

apaa
H

mm

mm
m , (11.183) 

where 

                oaoooa
T

oaoaaoaaaa GkkGGkkk  ,  (11.184) 
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             oaoooa
T

oppa
T

ap GkkGkk  ,  (11.185) 

         opoo
T

oppp GkGk  ,    (11.186) 

and similarly 

                oaoooa
T

oaoaaoaaaa GmmGGmmm  , (11.187) 

             oaoooa
T

oppa
T

ap GmmGmm  ,  (11.188) 

         opoo
T

oppp GmGm  .    (11.189) 

In equations (11.184)-(11.189) the partition (11.26) in a-set and o-set 

DOFs has been used for the full equations. 

11.4.2  Exact reduced system 

The equation of free undamped vibrations (11.81)  
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u

mkmk
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
, (11.190) 

can be solved for in terms of  au  

              aoaoaooooo umkmku 212  


.  (11.191) 

The displacement vectors can be written as sums 

       r
a

c
aa uuu  ,    (11.192) 

       r
o

c
oo uuu  ,    (11.193) 

where the superscripts denote  c-constrained, r-relaxed. 

Step 1. When the a-set coordinates are constrained to zero,    0c
au , the 

lower partition of (11.190) yields 

         02  c
ooooo umk  .   (11.194) 

For the exact solution, the full ‘o’-eigenvalue problem should be solved 

 op nn   giving the modal matrix of “constraint modes”  oo  and the spectral 

matrix  oΛ  containing the eigenvalues of the complementary system  

       ooo
c
o qu  ,    (11.195) 
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     ooook    oooom   oΛ .  (11.196) 

From equations (11.179), (11.186) and (11.189) we get 

   ooopG  ,    opp Im  ,  ppk  oΛ . (11.197) 

Step 2. Relaxing the constraints of the “complementary system”, the 

solution is obtained setting 0  in equation (11.191), producing 

       r
aoo

r
o uGu  ,    (11.198) 

where 

       oaoooa kkG
1

     (11.199) 

is the standard Irons-Guyan static condensation transformation. 

Equation (11.179) becomes 
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. (11.200) 

Because        0 oaoooa Gkk , we obtain the standard static Irons-

Guyan reduced matrices 

           aoaaoaaaa kGkkk  ,  (11.201) 

                 aoaoooa
T

oaoaaoaaaa mGmmGGmmm  , (11.202) 

and also 

       0 pa
T

ap kk , 

         oooo
T

oopp kk  ¡ o «,  (11.203) 

          ooooo
T

oopp Imm   , 

              oaoooa
T

oooapa GmmBm   . 

Equation (11.181) becomes 
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, (11.204) 

From the lower partition 

          aoaooo uBqIΛ 22   , 
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           aoaooo uBIq
122 

  . (11.205) 

Substituting (11.205) into equation (11.204), the exact reduced 

eigenproblem is obtained as 

         02  a
c
a

c
a umk  ,   (11.206) 

where 

     a
c
a kk  , 

                 2122  A
aaoaoo

T
oaa

c
a mmBIBmm 


.    (11.207) 

The mass adjustment   2A
am  is a function of 2 , making (11.206) a 

nonlinear eigenvalue problem. 

“The exact constraint condition (11.191) is singular for frequencies near 

the modes of the dynamic system represented by the matrices of o-DOFs. This 

singularity is removed if the inertia terms are omitted as in GR. Any attempt to 

approximate the exact inertia terms will be poorly conditioned unless a-DOFs are 

selected so that the modes of the ‘o’-system are well above the frequency range of 

interest. This instability of the reduction process is an issue of concern for all models 

which seek to approximate the inertia forces missing in GR (Static TAM). This 

explains why a static TAM is often needed to get good orthogonality of the test 

modes even though the IRS-TAM or the hybrid TAM might provide a more accurate 

match of the FEM frequencies and mode shapes “ [11.28]. 

11.4.3  Craig-Bampton reduction 

The Craig-Bampton reduction [11.4] is a subset of the Exact Reduced 

System technique.  

The coordinates  au  consist of interface (attachment) and other (internal) 

retained physical coordinates. The coordinates  pq  are a truncated set of normal 

mode coordinates  op nn   
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The normal modes are obtained with all interface and other retained 

physical coordinates fully restrained, hence the name “constrained normal modes”. 

The coordinate transformation matrix  HT  (11.180) consists of an an  set 

of “statical constraint modes”  
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   




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
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I
, 

defined by statically imposing a unit displacement on one physical coordinate and 

zero displacements on the remaining a-DOFs, and a truncated set of pn  normal 

modes of the o-set eigenproblem,  

     pp , 

representing displacements relative to the fixed component boundaries. 

The constraint modes represent global shape functions or Ritz vectors, i.e. 

displacements produced by displacing the boundaries. 

Taking only tp nn    ot nn   target modes in (11.195) 

        otto
c
o qu  ,   (11.208) 
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, (11.209) 

so that 

        otoootoo mk    otΛ , 

     otoo
T

ot k   otΛ ,          totoo
T

ot Im  . (11.210) 

Equation (11.204) becomes 
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, (11.211) 

where the reduced stiffness and mass matrices have constant elements. 

The reduction is done by truncating the number of constrained normal 

modes  ot nn  . 

11.4.4  General Dynamic Reduction 

The General Dynamic Reduction (GDR) method [11.29], as the Craig-

Bampton reduction [11.4], allows for the general substructuring that permits the a-

DOFs to be subdivided into various sets of DOFs.  

With the a-DOFs constrained, the o-DOFs can be expressed as 



                                                                                           MECHANICAL VIBRATIONS 280 

          ppoaaoo qGuGu  .  (11.212) 

The transformation matrix relating the o-DOFs to the generalized 

coordinates is 

         paaopopo GG   ,   (11.213) 

where  po and  pa are the modal matrices for the o-set and a-set using pn  

generalized coordinates ( tp nn   target modes)  
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
  

and constraining the  au  vector set in some reasonable fashion. 

When  au  is constrained to zero,    0pa  and equation (11.213) 

gives    oppoG  . 

This way, the GDR method will follow the ERS method but would not use 

the full set of complementary system eigenvectors. 

In MSC/NASTRAN, the truncated set of normal modes used in CBR is 

replaced by a subspace of independent vectors generated with the aid of a modified 

power method, starting the iteration process with a set of vectors filled with random 

numbers. 

Normal modes in CBR are calculated using a time-consuming eigenvalue 

extraction method, while the GDR derived vectors are obtained from a matrix 

iteration process. In MSC/NASTRAN the run in which the system matrices are 

reduced is in fact the same run used to solve the eigenvalue problem of the complete 

reference FEM. 

11.4.5  Extended Guyan Reduction 

The Extended Guyan Reduction method [11.30] also employs generalized 

coordinates, but uses a different method to determine  aoG and  poG . 

Equation (11.83) is  

                  a
d
oaaoaoaoooao uGudGdGu  2 . (11.214) 

Defining a set of generalized coordinates at a-DOFs as 
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       aa uq 2 ,   (11.215) 
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. (11.217) 

Note that ap nn  . 

Equation (11.204) becomes 
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where 
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  (11.219) 

             oaoooa
T

oppa GmmGB  , (11.220) 

and  ak  and  am  are the Guyan reduced matrices. 

Like in the ERS method, the model can be further reduced to the a-set 

using equations similar to (11.205) - (11.207) except for 

          apappa uBmkq
122 

  ,  (11.221) 
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so that the reduced problem is (11.206) 
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and the full system displacement vector is 

  
 
 

   

      

 
  









































a

a

oaoaooao

a

o

a

q

u

dGdG

I

u

u
u

0
. (11.224) 

The transformation matrix has the same form as for the Craig-Bampton 

reduction. The only difference is the partition  opG . Its columns are “mass-
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weighted” static shape vectors associated with the o-DOFs when the a-DOFs are 

constrained. 

Calculation of constrained mass-weighted shape vectors requires much less 

computational effort than constrained mode shape vectors. 

11.4.6  MacNeal’s reduction 

Consider at nn   and or nn   in equation (11.75) so that [11.31], [11.32] 
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where  af  are harmonic interface forces acting between substructures. 

The corresponding eigenvalue problem is 

          02  rr mk  ,    (11.227) 

      k
T  Λ ,         Im

T
 .  (11.228) 

Substituting in (11.226) the coordinate transformation  

     qu       (11.229) 

and premultiplying by  T
  gives 
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or, in partitioned form 
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From the lower partition 

   rq   rΛ  rI2  1    f
T

r  (11.232) 

which substituted in (11.225) gives 

        rtt qu     rΛ  rI2  1    f
T

r , 
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or 

        tt qu    fr ,   (11.233) 

where the “dynamic residual flexibility matrix” is 

    rr     rΛ  rI2  1   T
r .  (11.234) 

If the maximum natural frequency r  to be calculated for the structure is 

much less than the lower eigenfrequency of the residual (omitted) system included in 

¡ r «, then it is possible to disregard the term  rI2  in equation (11.184) in 

the sense of static condensation. 

The “static residual flexibility matrix” can be approximated by 

     r
S
r     1

rΛ   T
r ,   (11.235) 

so that the approximate displacement vector 

     tt qû         rtt
S
r qf     1

rΛ    f
T

r .         (11.236) 

If ta nn   then  f  can be determined from the upper partition of 

(11.231) 

    tΛ  tI2  tq    f
T

t   (11.237) 

as a function of  tq , so that  û  can be expressed in terms of the reduced set  tq  

of target (active) modal coordinates 

 û   t  r   1

rΛ     T
t

T
r


   tΛ  tI2  tq .  (11.238) 

11.5  FRF reduction 

Frequency Response Function matching [11.33] is based on the identity 

relating the FRF matrix and the dynamic stiffness matrix 
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From the lower partition 

        aoaooo HZZH
1

 ,   (11.240) 
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The transformation matrix is 

     
   








 

oaoo

aFRF

ZZ

I
T 1 .   (11.242) 

The reduced dynamic stiffness matrix is 

          FRFTFRF
red TZTZ  .  (11.243) 

The reduced FRF matrix 

        1
  redred ZH   (11.244) 

is compared to the measured  aH . 

Comparison of FRF matrices has some possible advantages: a) each FRF 

contains information about out-of-band modes, b) experimental FRFs are free from 

errors from modal parameter estimation, and c) is flexible to specify a-DOFs. 
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12. 
TEST-ANALYSIS CORRELATION 

In structural modeling, the large order analytical model is correlated with 

the low order experimental model, in order to validate or update the former. Test-

analysis correlation studies are carried out to validate structural finite element 

models. Direct comparison of mode shapes requires a test-analysis model which is 

a reduced representation of the structure. Its degrees of freedom (DOF) correspond 

to sensor/exciter locations during the modal survey test and are a small sub-set of 

the analytical DOFs. Mass and stiffness matrices containing only test DOFs are 

commonly used in orthogonality and cross-orthogonality checks. This chapter 

presents model comparison techniques and strategies for the placement of sensors 

and exciters. 

12.1  Dynamic structural modeling 

One of the primary modeling objectives in structural dynamics is to 

produce reliable structural models to predict the dynamic response, to derive design 

loads and limit responses, to establish stability margins or to design adequate 

control systems for large scale structures. 

Uncertainties of purely analytical modeling procedures, such as 

discretization, boundary conditions, joint flexibilities, and damping, require 

experimental verification of the predictive accuracy of the analytical (usually finite 

element) model. Current practice is to use models based on, or improved by, the 

use of measured quantities. 

Purely test-based modeling may have the same level of uncertainty due to 

the limited capabilities of test methods, truncated temporal and spatial available 

information, and shortcomings of the identification approach. The solution is to use 

combined analytical/experimental procedures to derive structural models able to 

meet the performance goals of the respective dynamic mechanical system. 
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Complete procedures include pre-test planning and analysis, finite 

element (FE) modeling, test data acquisition, data reduction and analysis, model 

parameter identification, test/analysis correlation, model validation or updating. 

12.1.1  Test-analysis requirements 

Requirements of combined dynamic test/analysis procedures include use 

of consistent and accurate experimental data, compatibility of experimental and 

analytical models and model verification/updating using test data. 

Current issues met in comparisons between experiment and prediction are: 

a) condensation (reduction) of analytical models; b) condensation of experimental 

data to obtain a minimum order identification model; c) expansion of measured 

modal vectors; d) calculation of real normal modes from identified complex or 

monophase forced modes of vibration; and e) identification of the spatial properties 

of the model. A schematic view of structural modeling is shown in Fig. 12.1. 

 

Fig. 12.1 (from [12.1]) 

Detailed schemes are presented in Fig. 12.2 and Annex 1. The 

“experimental route” (measured FRFs  modal model  spatial model) is 

compared to the “analytical route” (FE model  modal model  analytical FRFs), 

which is crossed in reverse direction. Comparisons and correlations between 

experiment and prediction can be made using each dynamic model (physical, 

modal, and response). 
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Considering that the structure of the model is known (or assumed), the 

problem is to use a noisy set of measurement data to find those parameters of the 

model that fit the data optimally. The optimization problem consists of the 

minimization of a cost function based on residuals that define the difference 

between measured and predicted quantities. Measured quantities are considered the 

most accurate. Most updating procedures are based on the sensitivity of modal 

parameters to changes in physical properties of the modeled system. 

Direct comparison of modal quantities requires prior pairing of the 

corresponding measured and analytical modes. Some formulations introduce modal 

parameters in cost functions based on stress residuals. Generally, only real modal 

quantities are compared, requiring a real-normalization of identified complex 

modes or their calculation from monophase-forced modes. 

 

 

 
Analytical 

Route 

 

 

 

 

 

 

 

 

 

 

 

 
Experimental 

Route 
 

 
Fig. 12.2 

Comparison of spatial properties implies prior condensation of analytical 

mass and stiffness matrices. This distributes the local errors over all matrix terms. 

Modal condensation, extended Guyan reduction or dynamic reduction can be used, 

as shown in Section 11.3. However, global updating procedures, in which elements 

of global matrices are adjusted by minimizing global objective functions, cannot 

localize error sources. 

Local updating procedures based on subsystem formulations are 

preferred. The design parameters are proportionality constants in the relationships 

between global matrices and element or subsystem matrices. Combined with a 
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sensitivity analysis, this maintains the physical interpretation of localized errors. 

However, selection of correction parameters might be a difficult task. 

Comparison of response properties seems the most appropriate, although 

frequency response functions (FRF) are the end product of the analytical route, 

containing all modeling uncertainties. Direct use of input/output measurement data 

for comparison of output residuals implies a linearity check. Otherwise a linear 

model will be forced to fit a nonlinear structure. 

12.1.2  Sources of uncertainty 

The identification of a mechanical system or structure from test data is 

complicated by uncertainties in system modeling. These uncertainties often lead to 

modeling errors. 

Modeling errors are due to system properties which are not fully 

understood, such as nonlinearities, hysteresis, model dimensions, truncation errors, 

and a general lack of the full characterization of structural materials. The 

incompleteness of the test data set can be due to spatial truncation and frequency 

truncation. In the first case, the number of measurement degrees of freedom (DOF) 

is limited and different from the FE DOFs, and the rotational DOFs cannot be 

readily measured. In the second case, the number of measured mode shapes is 

limited, while some modes are not excited or not identified. In addition to system 

uncertainties, forces (such as preloads) may be acting on the system during the 

period of parameter identification which are not taken into account as input data. 

Errors associated with model reduction are also associated with modal 

identification. The transformation between test DOFs and analysis DOFs is 

frequency dependent. It is very sensitive to the proximity of the system natural 

frequencies to the natural frequency of the subsystem remaining when all retained 

(test) DOFs are constrained. 

In model updating, there are FE errors, model correction errors, 

connectivity errors and global correction errors. 

Errors inherent to the FE technique include discretization errors (mesh 

quality, efficiency of shape functions), global approximation errors (integration, 

truncation, round-off, eigenparameter extraction), and interpolation errors 

(elemental). Errors introduced by the analyst include the omission of ‘unimportant’ 

details, choice of elements to represent a given geometry and uncertainties 

associated with boundary conditions. Issues of concern are the global errors which 

have not directly associated elements. 

Model correction errors encompass linearization (use of design 

parameters to multiply elemental matrices), frequency dependence of correction 

factors (different modes have varying degrees of sensitivity to changes in a given 

element; also inclusion/exclusion of a mode makes significant differences), choice 
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of elements kept in analysis, the objective function to be minimized, weighting of 

input parameters, number and location of measurement coordinates, location of 

frequency points in FRFs and vector expansion errors. 

As for the global correction errors, it must be emphasized that methods 

based on a least squares fit will not necessarily lead to an analytical model that is 

physically representative of the actual structure. All it can do is to correctly predict 

the measured modes. In global updating, any effect due to an update to the stiffness 

matrix can be accomplished by an update of the mass matrix. Also, an increase of 

accuracy within the frequency band of interest may be accompanied by a 

corresponding loss of accuracy outside the frequency band. 

Having in view all these possible errors, model updating often reduces to 

a simple model fitting.  

A first step in the general process of model verification is the model 

validation, where the basic structure of the model is verified. The next step is the 

parameter estimation. In order for parameter estimation to be successful, so that 

the model may be used with confidence to predict system behavior in a new 

environment, the basic structure of the model must be “correct”, i.e. the primary 

load paths, mass distribution and boundary conditions must be properly represented 

in the equations of motion. This is a time-consuming trial and error process. 

The validation of a theoretical model is usually done in three main steps: 

a) comparison of specific dynamic properties, measured vs. predicted; b) 

quantification of the extent of differences (or similarities) between the two sets of 

data; and c) adjustment or modification of one or the other set of results in order to 

bring them closer to each other. 

Note that the concept of a verified model is different from that of a 

validated model. A model is said to be verified if it contains the correct features, 

most importantly the appropriate number and choice of DOFs, to represent the 

behavior of the structure. A model is said to be valid if the coefficients in that 

model are such as to provide an acceptable quantitative representation of the actual 

behavior. A model can only be validated after it has been verified. This means that 

comparisons and correlations can be made only after the two models to be used are 

compatible with each other, and with their intended roles [12.2]. 

12.1.3  FRF based testing 

Most FRF-based modal testing procedures involve structural excitation, 

acquisition of frequency response data, calculation of FRFs, extraction of modal 

parameters, and model verification or modification. All parts of this process are 

connected and must be treated as interdependent. 

Pre-test analysis. The first stage is exploratory and is intended to provide 

a general view of the dynamic properties of a structure; e.g., modal density, level of 
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damping, degree of nonlinearity, repeatability of data. Based on these data, the 

basic test parameters can be chosen; i.e., frequency range, coordinates to be 

included, set of FRFs that should be measured and analyzed. The test plan is a 

compromise between resources, test objective and know-how.  

The geometry of the structure must be defined and discretized into points 

at which measurements will be taken. It is recommended that the number of points 

used be equal to or greater than the number of modes of interest. Otherwise, 

geometry truncation errors will affect the model. In some cases, the response at 

assumed stations can be analytically generated from responses at actual stations. 

The main question to be answered is the following: What is the optimal 

set of actuator/sensor locations, input time-histories and system (structural) 

characterizations required for a particular structure so that errors in system 

modeling would have minimal effect on the identified results? 

Translational as well as rotational degrees of freedom must be 

considered, especially at structural attachment points, for proper application of 

modification procedures. During preliminary tests, checks are made of the 

suspension of the structure and the exciter attachment site, and of reciprocity, 

repeatability, linearity, and instrumentation calibrations. Excitation locations and 

check levels are selected. 

When multi-input excitation is used, the reciprocity and coherence 

functions at each exciter location can be plotted and compared. Those locations 

displaying the best reciprocity and coherence are selected as the reference 

coordinates in the generation of the FRF matrix. The experimental conditions affect 

the covariance matrix of the estimates. With a bad choice of input, some 

parameters of interest may not be identifiable. Theoretically, an impulse or white 

noise random excitation applied at appropriate locations will excite all modes of 

the system. But sometimes the signal energy could be insufficient to excite both the 

global and local modes.  

Significant participation of the important modes is a necessary condition 

for practical identification. Selection of response measurement locations which 

ensure an effective relative independence of contributing modes is important. It is 

also desirable to select an input which maximizes the sensitivity of the system 

output to unknown parameters. As criteria to achieve an optimal input are not fully 

developed, it is good practice to choose an input that is, as far as possible, similar 

to the inputs the system will experience during operation. Force patterns can also 

be calculated that may be used to enhance FRFs to make single-degree-of-freedom 

identification methods applicable to high modal density situations. 

A test-analysis model can also be developed in the pre-test phase. 

Sometimes it helps in the definition of test geometry. 

Singular value ratio plots and mode indicator functions can be used to 

determine the effective number of modes active within a particular frequency 
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range. Pole Stabilization Diagrams are also used to define the optimum number of 

roots in the identification algorithm. Nonlinearities can be recognized from the 

pattern of isochrones (as shown in Chapter 2). 

Data acquisition and processing. The second stage of modal tests on 

complex structures is the process in which all the data required to build the final 

model are measured and then processed. As shown in Chapter 10, two techniques 

are currently in widespread use for determining structural dynamic characteristics: 

modal tuning and frequency response. Modal tuning methods attempt to excite and 

isolate one particular mode through sinusoidal excitation. Frequency response 

methods attempt to excite modes occurring in a finite frequency range and to 

measure FRFs. Calculation of FRFs from simultaneous multiple force inputs has 

shortened measurement time and improved the consistency of data. Time response 

methods using free decays, impulse response functions, and random decrement 

signatures are also in use. 

Data base validation. The third stage is verification of the accuracy of 

modal parameters. Comparisons of natural frequencies and damping levels are 

made as dispersion error checks. Before orthogonality checks for mode shapes are 

performed, matching the node and sensor numberings is a necessary step. The 

Modal Assurance Criterion (MAC) is used for mode pairing. Discrepancies 

between measured and identified mode shapes are made on a DOF basis using the 

Coordinate MAC. If the mass matrix accurately represents the mass properties of 

the modal model, a diagonal orthogonality error matrix is obtained. In practice, if 

the off-diagonal terms of the error matrix are less than a given value, the set of 

measured modes is orthogonal. Synthesized FRF expressions recreated from a 

mathematical model are then compared with experimentally measured FRF data to 

check the fitting accuracy. 

12.2  Test-analysis models 

Advanced engineering structures require accurate analytical (finite 

element) models (FEM) for structural analysis and control system design. A basic 

objective of a modal survey is to verify that the FEM of a structure is sufficiently 

accurate to predict the structure’s response to operating environments. The modal 

surveys measure the natural frequencies and mode shapes of the structure for use in 

model verification.  

In general, the FEM has many more degrees of freedom than the 

measurement points on the test structure. In order to compare the FEM with the test 

results directly, a reduced representation or Test-Analysis Model (TAM) must be 

generated. The degrees of freedom of the TAM will correspond one for one with 

accelerometers in the modal survey test configuration. The TAM is represented by 

mass and stiffness matrices containing only test DOFs. 
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The development of a TAM serves several major functions. The selection 

of TAM DOFs optimizes the test measurements and excitation locations. The 

reduced mass matrix provides an ability to calculate on-site orthogonality checks of 

the test modes. Finally, the TAM enables a quantitative comparison of the accuracy 

of the FEM during post-test correlation activities in the form of orthogonality and 

cross-orthogonality checks. All of these tasks require an accurate reduction of the 

FEM mass and stiffness matrices down to the TAM DOFs, or the TAM will not be 

able to perform its functions. 

The position of the TAM between the FEM and the Test Model is 

schematically shown in Fig. 12.3. Apart from the FEM/TAM and TAM/Test 

comparison and correlation, FEM/Test comparisons are also made, either at the full 

FEM size or at the TAM size. 

The main TAM performance criteria are accuracy and robustness [12.3]. 

Accuracy is a measure of the TAM ability to match the full FEM mode shapes and 

frequencies. Robustness is a measure of the TAM ability to provide reliable cross-

orthogonality (analytical vs. test) and self-orthogonality (test vs. test) results. 

Robustness is of particular importance because showing orthogonal test modes is a 

commonly used requirement to determine the success of a modal survey. The TAM 

challenge is to match as closely as possible the TAM eigenpairs to those of the full 

FEM, providing at the same time reliable orthogonality results, especially when the 

FEM has inaccuracies. 

 

Fig. 12.3 

The TAM concepts presented in Chapter 11 are based on various 

reduction methods. 
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The relationship between the FEM displacement vector and the reduced 

test-derived vector of a-DOFs or generalized coordinates is expressed as 

     auTu      (12.1) 

where the transformation matrix  T  has the following expressions, in which the  

notations from Chapter 11 are used: 

a) for the Static TAM (11.25) 
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b) for the IRS-TAM (11.68) 
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c) for the Modal TAM (11.112) 
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d) for the Hybrid TAM (11.145) 

              at
T

atatSmSTh mTTTT  . (12.5) 

The reduced mass matrices have the form 

         TmTm FEM
T

TAM  .   (12.6) 

Comparisons of modal TAMs and non-modal TAMs are presented in 

Section 11.3.5, and in [12.3] and [12.4]. 

It was shown [12.5] that the Arnoldi vectors (Section 8.6.3) provide a 

more suitable subspace for model reduction than the eigenvector space used in the 

Modal TAM. Without compromising accuracy, they can ensure robustness by 

proper selection of the first vector and choice of the number of Arnoldi vectors 

used in calculation. 

The transformation matrix of the Arnoldi TAM is  
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where  aV and  oV are the top and respectively bottom partition of the matrix of 

“target” Arnoldi vectors and   denotes the pseudoinverse. 

The Schur TAM [12.6] is a modified Modal TAM constructed with Schur 

vectors, resulting in reduced computational expense. Generalized Schur vectors are 

the columns of one of the orthogonal matrices that simultaneously transform the 

stiffness and mass matrices to upper triangular form (Section 8.4.4). For large and 

sparse matrices, they provide a basis with much better numerical properties than a 

set of eigenvectors and a more suitable subspace for model reduction. Schur 

vectors are determined before eigenvectors. 

The transformation matrix of the Schur TAM is  
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where  aU and  oU are the upper and respectively lower partition of the matrix 

of “target” Schur vectors. 

It is useful to compare TAM mass matrices,  TAMm , obtained by 

different model reduction methods, either on the same test modal vectors, or on 

reduced analytical modal vectors. The comparison is based on the orthogonality of 

the reduced mass matrices with respect to either the test or the analytical modal 

vectors. 

There are three main kinds of comparison: 1) analytical-to-analytical 

(FEM-to-FEM, TAM-to-TAM, and TAM-to-FEM), 2) experimental-to-

experimental, and 3) analytical-to-experimental [12.7].  

The Test Orthogonality matrix, defined as 

         TESTTAM
T

TEST mTOR        ,  (12.9) 

is a measure of the robustness of the TAM reduction method, i.e. the ability of the 

TAM to provide TOR matrices that resemble the identity matrix, when the FEM 

has inaccuracies. It is used to verify the quality of test data during modal testing. 

The matrix  TEST  contains the measured modal vectors as columns. Use of the 

TAM mass matrix raises problems. One must differentiate reduction errors from 

discrepancies between the FEM and the TEST model. 

 Equation (12.9) can also be written 

         aXa
T

aX mTOR        .   (12.9, a) 

 A normalized version, allowing different scaling of the two vector sets 

 q,r  is 
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It should be mentioned that, when correlating test with test, no procedure 

will diagnose a systematic fault that is present in both sets of data (e.g., calibration 

inaccuracies), as its effect on the mode shapes will be cancelled out by the 

correlation algorithm. 

The Generalized Mass matrix is defined as 

        R
FEMTAM

TR
FEM mGM        ,  (12.10) 

where  R
FEM  is the matrix of target analysis modes reduced to the measured 

DOFs. It is used as an indicator of the goodness of the TAM mass matrix, revealing 

errors in the TAM due to the reduction process. For a perfect TAM it should 

approximate to the identity matrix. 

The Cross Orthogonality matrix 

        TESTTAM
R
FEM mXOR       T   (12.11) 

is a less stringent check of robustness, since the test modal vectors are used only 

once in the calculation. 

Note that the TAM accuracy, i.e. its ability to predict the dynamic 

response of the structure to operating environments, is assessed by comparison of 

modal frequencies and mode shapes, i.e. of test and TAM modal properties. 

Example 12.1 

An indirect comparison of the TAM mass matrices, obtained by four 

reduction methods presented above, can be made based on the test mode shapes 

and the mixed orthogonality check TOR. A typical result is illustrated in Fig. 12.4, 

presenting the TOR matrices calculated from four different reduced mass matrices. 

The reference FEM of the structure, having about 45,000 DOFs, has been reduced 

to a 120 DOFs TAM, having 15 flexible natural modes between 5.2 and 34.3 Hz.  

The largest off-diagonal terms occur in the TOR matrix of the Modal 

TAM (Fig. 12.4, a), especially for the higher residual modes. This can be an 

indication that the spatial resolution given by the selected response measurement 

points (the a-set) is insufficient to make the target modes linearly independent and 

observable – an important outcome of such a comparison process. 

The Hybrid TAM shows a slight improvement on the Modal TAM, due to 

the inclusion of static modes with the target modes (Fig. 12.4, b). 
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Surprisingly, the Static TAM performs better than the Modal TAM, 

showing smaller off-diagonal terms (Fig. 12.4, c). The IRS TAM yields the best 

reduced mass matrix, producing the lowest off-diagonal elements in the TOR 

matrix (Fig. 12.4, d). 

  

a b 

 
 

c d 

Fig. 12.4 (from [12.7]) 

While the Modal TAM gives the best match in frequencies and target 

modes, its prediction capability is low outside the frequency range spanned by the 

selected target modes.  

The Static TAM, implemented as the Guyan Reduction in many computer 

programs, performs better in orthogonality checks, but is dependent on the 

selection of a-DOFs and generally requires more a-DOFs to give comparable 

accuracy. However, these types of comparisons are usually problem-dependent. 
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12.3  Comparison of modal properties 

Modal properties that are compared usually include natural frequencies, 

real mode shape vectors, modal masses, modal kinetic and strain energies. For 

systems with complex modes of vibration one can add modal damping ratios and 

complex mode shapes.  

Comparison of modal vectors can be done at the reduced order of TAM 

or at the full order of the FEM. Reduction of the physical mass matrix or expansion 

of test modal vectors bring inherent approximations in the comparison criteria. A 

test-analysis comparison is meaningful only for matched modes, i.e. for Correlated 

Mode Pairs (CMPs). These are estimates of the same physical mode shape and 

their entries correspond one-for-one with their counterparts. Mode matching 

(pairing) is an essential step before any comparison can be undertaken. 

It is useful to compare: 1) measured mode shapes against modal vectors 

determined by an analytical model; 2) estimates of the same test modal vector 

obtained from different excitation locations; 3) estimates of the same modal vector 

obtained from different modal parameter identification processes using the same 

test data; and 4) one test mode shape before and after a change in the physical 

structure caused by a wanted modification, by damage or by operation over time. 

12.3.1  Direct comparison of modal parameters 

Scalar quantities, such as natural frequencies, modal damping ratios, norms of 

modal vectors, modal masses and modal energies are usually compared by simple 

tabulation of the relative error. If there is one-for-one correspondence between the 

r-th and the q-th modes, then the following discrepancy indicators are used: 

- the relative modal frequency discrepancy 
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For some spacecraft structures, having about twenty flexible modes up to 

50 Hz, modeling accuracy criteria typically specify values %f 5 . Comparative 

values for mode shape and damping ratio discrepancies are %10  and 

%25 , respectively. 

A straightforward way to compare two compatible sets of data is by 

making an X-Y plot of one data set against the other. The method can be used to 

compare natural frequencies from two different models. For well-correlated data, 

the points of the resulting diagram should lie close to a straight line of slope equal 

to 1. If the approximating straight line has a slope different from 1, this indicates a 

bias error due to either calibration or erroneous material property data. Large 

random scatter about a 45o line indicates poor correlation or bad modelling. 

The procedure can be applied to the mode shapes of correlated mode 

pairs. Each element of a test mode shape is plotted against the corresponding 

element of the analytical modal vector. For consistent correspondence, the points 

should lie close to a straight line passing through the origin. If both modal vectors 

are mass-normalized, then the approximating line has a slope of  1. 

12.3.2  Orthogonality criteria 

The most relevant way to assess the validity of a set of modal vectors is 

the orthogonality check. For this it is necessary to compute: a) a FEM of the tested 

structure, b) an analytical mass matrix reduced to the test DOFs, and/or c) a set of 

test mode shapes expanded to the FEM DOFs. 

The formulae given below assume that experimentally measured (test) 

quantities are labelled by X and theoretically predicted (analytical) quantities are 

labelled by A. 

The mass-orthogonality properties of FEM real mode shapes can be written 

         Im AA
T

A        ,   (12.12) 

where  A  is the modal matrix at the full FEM order,  Am  is the FEM full-order 

mass matrix and  I  is the identity matrix of the corresponding size. 

For the TAM, the mass-orthogonality condition becomes 

         Im R
A

R
A

TR
A        ,   (12.13) 

where      R
Am  is the reduced TAM mass matrix (Section 12.4.1) and  R

A  

contains the modal vectors reduced to the measured DOFs and mass-normalized 

with respect to      R
Am . 
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12.3.2.1  Test Orthogonality Matrix 

A mixed orthogonality test of the set of measured modal vectors  X  is 

often done to check the quality of measurement data. The Test Orthogonality 

(TOR) matrix (12.9) can be written 

         X
R
AX mTOR         T .   (12.14) 

If the measured modal vectors are orthogonal and mass-normalized with 

respect to the reduced mass matrix     R
Am , then  TOR  will be the identity matrix. 

Test guidelines specify 1 rrTOR  and rqTOR 0.1.  

12.3.2.2  Cross Orthogonality Matrix 

A cross-orthogonality test is performed to compare paired modal vectors, 

measured with analytical. 

A Cross Generalized Mass (CGM) matrix, defining a Cross 

Orthogonality (XOR) criterion, can be constructed with mass-normalized modal 

vectors either at the TAM size: 

                 R
A

R
A

T
XTAM mXOR  ,  (12.15) 

or at the full FEM size: 

         AA
TE

XFEM mXOR        ,  (12.16) 

where  E
X contains the test modal vectors expanded to the full FEM DOFs. 

For perfect correlation, the leading diagonal elements rrXOR  should be 

larger than 0.9, while the off-diagonal entries rqXOR  should be less than 0.1. 

Use of the reduced mass matrix  R
Am  raises problems. One must 

differentiate reduction errors from discrepancies between the FEM and the test 

model. 

When the reduced TAM mass matrix is obtained by the SEREP method 

(Section 11.3.2), XOR is referred to as a Pseudo-Orthogonality Criterion (POC). It 

is demonstrated that POCTAM=POCFEM. In this case, the full FEM mass matrix is 

not needed to compute either  R
Am or POCTAM  because  

                R
A

TR
A

R
Am  ,   (12.17) 

where the superscript + denotes the pseudoinverse [12.1]. 
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Cross-orthogonality criteria cannot locate the source of discrepancy in the 

two sets of compared mode shapes. Large off-diagonal elements in the cross-

orthogonality matrices may occur simply because they are basically small 

differences of large numbers. Also, modes having nearly equal frequencies may 

result in linear combinations of analysis modes rotated with respect to the test 

modes, case in which the off-diagonal elements of  XOR  are skew-symmetric. 

12.3.3  Modal vector correlation coefficients 

This section presents global indicators for vector correlation and degree-

of-freedom-based vector correlation methods. 

12.3.3.1  Modal Scale Factor 

If the two compared mode shape vectors have different scaling factors, it 

is useful to determine the slope of the best line through the data points. This is 

calculated as the least squares error estimate of the proportionality constant 

between the corresponding elements of each modal vector 

       XA X,AMSF      ,   (12.18) 

where  X  is the test vector and  A  is the compatible analytical vector. 

For real vectors, it is a real scalar referred to as the Modal Scale Factor 

(MSF), defined as 
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 For complex vectors, the superscript T is replaced by H (hermitian) and the 

MSF is a complex scalar. 

The MSF gives no indication on the quality of the fit of data points to the 

straight line. Its function is to provide a consistent scaling factor for all entries of a 

modal vector. It is a normalized estimate of the modal participation factor between 

two excitation locations for a given modal vector. 

12.3.3.2  The Modal Assurance Criterion 

One of the most popular tools for the quantitative comparison of modal 

vectors is the Modal Assurance Criterion (MAC) [12.8]. 

The MAC was originally introduced in modal testing in connection with 

the MSF, as an additional confidence factor in the evaluation of a modal vector 

from different excitation locations. 

When an FRF matrix is expressed in the partial fraction expansion form, 

the numerator of each term represents the matrix of residues or modal constants. 
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Each residue matrix is proportional to the outer product of one modal vector and 

the corresponding vector of the modal participation factors. Each column of the 

residue matrix is proportional to the respective modal vector. One can obtain 

estimates of the same modal vector from different columns of the residue matrix. 

MAC has been introduced as a measure of consistency and similarity between these 

estimates. 

If the elements of the two vectors are used as the coordinates of points in 

an X-Y plot, the MAC represents the normalized least squares deviation or ‘scatter’ 

of corresponding vector entries from the best straight line fitted to the data, using 

the MSF. The concept can be applied to the comparison of any pair of compatible 

vectors.  

The MAC is calculated as the normalized scalar product of the two sets of 

vectors  A  and  X . The resulting scalars are arranged into the MAC-matrix 
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where the form of a coherence function can be recognized, indicating the causal 

relationship between  A  and  X .  

 Note that the modulus in the numerator is taken after the vector 

multiplication, so that the absolute value of the sum of product elements is squared. 

An equivalent formulation is 
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 The MAC has been used as a Mode Shape Correlation Constant, to 

quantify the accuracy of identified mode shapes [12.9]. For complex modes of 

vibration 
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and is clearly a real quantity, even if the mode shape data are complex. 

The MAC takes values between 0 and 1. Values larger than 0.9 indicate 

consistent correspondence, whereas small values indicate poor resemblance of the 
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two shapes. The MAC does not require a mass matrix and the two sets of vectors 

can be normalized differently. The division cancels out any scaling of the vectors. 

If  r   and  q  are the r-th and q-th columns of the real modal 

matrix   , then, using the cross-product (Gram) matrix      
T

G  , the 

MAC can be written 

    rq
qqrr

rq

GG

G
qr,MAC 2

2

cos
 

  ,   (12.23) 

where    q
T
rrqG      is the inner product and rq  is the angle between the two 

vectors. MAC is measure of the squared cosine of the angle between the two 

vectors. It shows to what extent the two vectors point in the same direction. 

 If 0MAC , the two modal vectors are not consistent. This can be due to: 

a) non-stationarity (mass or stiffness change during test), b) non-linearity (whose 

influence appears differently in FRFs generated from different exciter and sensor 

locations), c) noise on the reference modal vector  X , d) use of invalid 

parameter estimation algorithm (e.g.: real instead of complex modes), and e) 

orthogonal vectors. 

 If 1MAC , the modal vectors are consistent, but not necessarily correct. 

This can result when: a) measured vectors are incomplete (too few response 

stations – spatial truncation), b) modal vectors are the result of a forced excitation 

other than the desired input (e.g.: unbalance), c) modal vectors are primarily 

coherent noise ( X  should be a true modal vector), and d) modal vectors 

represent the same modal vector with different arbitrary scaling (given by the 

MFS). 

  
a b 

Fig. 12.5 (from [12.7]) 
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The ideal MAC matrix cannot be a unit matrix because the modal vectors 

are not directly orthogonal, but mass-orthogonal (Fig. 12.5, a). However, the MAC 

matrix indicates which individual modes from the two sets relate to each other. If 

two vectors are switched in one set, then the largest entries of the MAC matrix are 

no more on the leading diagonal and it resembles a permutation matrix. The two 

large off-diagonal elements show the indices of the switched vectors, as illustrated 

in Fig. 12.5, b. Figure 12.6 is the more often used form of Fig. 12.5, b. 

 

Fig. 12.6 (from [12.7]) 

The MAC can only indicate consistency, not validity, so it is mainly used 

in pre-test mode pairing. The MAC is incapable of distinguishing between 

systematic errors and local discrepancies. It cannot identify whether the vectors are 

orthogonal or incomplete. 

For axisymmetric structures, that exhibit spatial phase shifts between test 

and analysis mode shapes, improved MAC values can be obtained by the rotation of 

mode shapes prior to correlation. For test mode shapes that contain multiple 

diametral orders, a special Fourier MAC criterion has been developed, using the 

first two primary Fourier indices. 

The MAC is often used to assess the experimental vectors obtained by 

modal testing, especially when an analytical mass matrix is not available, and to 

compare test modal vectors with those calculated from FEM or TAM. The success 

of this apparent misuse is explained by two factors: First, test modal vectors 

usually contain only translational DOFs because rotational DOFs are not easily 

measured. If rotational DOFs were included in the modal vectors, the MAC would 

yield incorrect results. In this case it will be based on summations over vector 

elements of incoherent units, having different orders of magnitude. Second, for 

uniform structures, the modal mass matrix is predominantly diagonal and with not 

too different diagonal entries. In these cases, the MAC matrix is a good 

approximation for a genuine orthogonality matrix. 
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12.3.3.3  Normalized cross-orthogonality 

A Modified MAC (ModMAC), weighted by the mass or the stiffness matrix, 

referred to as the Normalized Cross-Orthogonality (NCO) is defined as [12.10]: 
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 The weighting matrix  W  can be either the mass or the stiffness matrix. 

In the first case, it is sensitive to local modes with high kinetic energy (rather than 

just the global low order mode shapes), in the second case - to regions of high 

strain energy. Applying the NCO separately, using the analytical mass and stiffness 

matrices, it is possible to locate sources of inadequate modeling. However one 

must be careful to differentiate inherent reduction errors from discrepancies 

between the FEM and test data. 

The NCO is able to use two arbitrarily scaled modal vectors. It defines 

the CMPs more clearly than the MAC. The square root version of NCO is being 

also used as a cross-orthogonality check based on mass-normalized modal vectors. 

12.3.3.4  The AutoMAC  

The AutoMAC addresses the spatial (or DOF) incompleteness problem. 

The MAC can show correlation of actually independent vectors. If the 

number of DOFs is insufficient to discriminate between different mode shapes, it is 

possible that one analytical modal vector to appear as being well correlated with 

several experimental vectors. 

It is necessary to check if the number of DOFs included in the model is 

sufficient to define all linearly independent mode shapes of interest. This check can 

be done using the AutoMAC, which correlates a vector with itself based on 

different reduced DOF sets. Spatial aliasing is shown by larger than usual off-

diagonal elements of the AutoMAC matrix. 

12.3.3.5  The FMAC 

The FMAC is an efficient way of displaying the MAC, the AutoMAC and 

the natural frequency comparison in a single plot [12.11], such that the mode shape 

correlation, the degree of spatial aliasing and the natural frequency comparison can 

be plotted simultaneously. This is obtained by drawing a circle with a radius 

proportional to the MAC or AutoMAC value at the coordinates of each modal 

frequency pair, as shown in Fig. 12.7. 
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Fig. 12.7 (from [12.11]) 

Example 12.2 

The experimental data used in this example have been obtained for the 

GARTEUR SM-AG-19 testbed (Fig. 9.66) as described in Section 9.4.5 and 

Example 10.2. Natural frequencies are listed in Table 10.2 for the unmodified 

structure, referred to as UNMOD, and in Table 9.3 for the structure modified by a 

mass added to the tail, referred to as MOD1. 

 

Fig. 12.8 (from [12.12]) 
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As can be seen from the mode description in the two tables, there are 

changes in the mode ordering as a result of the mass modification. One of the ways 

to track these changes is via the modal assurance criteria. 

Table 12.1.  MAC matrix between UNMOD and MOD1 

 MOD1 Mode Index 

 1 2 3 4 5 6 7 8 9 10 11 

U 

N 

M 

O 

D 
 

I 

n 

d 

e 

x 

1 99.05 0.28 0.05 0.34 0.01 0 0.43 18.76 0 0.28 0.04 

2 0 98.23 2.20 0.10 0.14 0 1.97 0 0.11 36.62 0.71 

3 0 0.15 13.55 30.66 16.41 0.02 0.10 0.50 0.97 0.55 0.21 

4 0.57 0.19 7.40 70.00 66.76 0.33 0.63 3.67 0.96 0.24 0.03 

5 0 0 45.13 1.75 31.98 0.51 0.87 0.02 0.63 17.98 24.43 

6 19.05 0.09 0 3.01 2.15 0.03 5.81 94.51 0.03 0.61 0 

7 0.43 1.03 18.87 0.42 5.38 18.44 43.76 3.84 0.17 11.99 7.04 

8 0 0 0.14 0.38 0.13 0.29 0 0.14 75.82 0.10 0.38 

9 0 47.38 2.76 0.03 3.46 2.64 13.90 0.15 0.61 81.99 1.23 

10 0 0.46 0.17 0.30 0.55 94.34 4.16 0.04 3.06 1.11 0 

 

 Figure 12.8 and Table 12.1 show the MAC matrix between the 10 

identified modes of UNMOD and the 11 modes of MOD1. It is evident that modes 

1, 2, 4 and 7 keep the same index in both sets. Modes 3, 5, 6, 8, 9 and 10 of 

UNMOD became modes 5, 3, 8, 9, 10 and 6 of MOD1. The swapping of modes 3 

and 5 has been established by animation of the respective mode shapes and it is not 

so evident in Fig. 12.8. In fact, mode 5 of MOD1 is a linear combination of two 

modes of UNMOD. 

 

Fig. 12.9 (from [12.12]) 
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Table 12.2.  AutoMAC matrix of UNMOD 

 UNMOD Mode Index 

 1 2 3 4 5 6 7 8 9 10 

U 

N 

M 

O 

D 

 

I 

n 

d 

e 

x 

1 100 0.15 0 0 0 19.69 0.70 0.04 0.05 0 

2 0.15 100 0.06 0 0 0.16 0.74 0.03 52.42 0.33 

3 0 0 100 0.15 8.58 0.23 0.39 0.36 0.70 0 

4 0 0 0.15 100 1.09 3.49 0.20 0.17 0.50 0 

5 0 0.16 8.58 1.09 100 0 22.65 0.19 4.54 0.08 

6 19.69 0.09 0.23 3.49 0 100 7.53 0.20 0 0.07 

7 0.70 1.03 0.39 0.20 22.65 7.53 100 1.69 0 7.51 

8 0.04 0 0.36 0.17 0.19 0.20 1.69 100 0.65 0.96 

9 0.05 52.42 0.70 0.50 4.54 0 0 0.65 100 4.92 

10 0 0.33 0 0 0.08 0.07 7.51 0.96 4.92 100 

 

 An explanation for the off-diagonal entries with relatively high value in the 

MAC matrix can be given using the AutoMAC plots. Figure 12.9 and Table 12.2 

show the AutoMAC matrix of UNMOD. The existence of non-negligible off-

diagonal correlation terms in the AutoMAC is an indication of spatial aliasing. This 

occurs when the number and location of the chosen response measurement 

coordinates are inadequate to distinguish the modes from each other.  

 
Fig. 12.10 (from [12.12]) 

 Figure 12.10 and Table 12.3 show the AutoMAC matrix of MOD1. It is 

evident that entries (9,2), (6,1) and (7,5) in the AutoMAC matrix of UNMOD 

correspond to entries (9,2), (6,1) and (7,3) in the MAC matrix. Entries (1, 8), (2, 

10) and (3, 11) in the AutoMAC matrix of MOD1 correspond to entries (1, 8), (2, 

10) and (5, 11) in the MAC matrix. Subtracting the large off-diagonal terms of the 

AutoMAC matrix from the corresponding lower or upper triangle of the original 

MAC matrix would result in a sort of deflated MAC matrix with better mode-

pairing properties. 
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Table 12.3.  AutoMAC matrix of MOD1 

 MOD1 Mode Index 

1 2 3 4 5 6 7 8 9 10 11 

M 

O 

D 

1 

 

I 

n 

d 

e 

x 

1 100 0.06 0.01 1.22 0.50 0 0.40 18.07 0.03 0.11 0.08 

2 0.06 100 1.33 0 0.54 0 1.01 0 0.03 32.56 0.54 

3 0.01 1.33 100 0.83 0.41 0.17 1.04 0 0.23 13.29 27.99 

4 1.22 0 0.83 100 18.78 0.01 0.29 3.42 2.16 0.29 0.09 

5 0.50 0.54 0.41 18.78 100 0.01 1.60 1.87 0.07 5.78 2.69 

6 0 0 0.17 0.01 0.01 100 0.65 0 0.78 0 0.49 

7 0.40 1.01 1.04 0.29 1.60 0.65 100 1.38 9.64 3.07 3.50 

8 18.07 0 0 3.42 1.87 0 1.38 100 0.25 0.70 0 

9 0.03 0.03 0.23 2.16 0.07 0.78 9.64 0.25 100 0.35 0.24 

10 0.11 32.56 13.29 0.29 5.78 0 3.07 0.70 0.35 100 0.45 

11 0.08 0.54 27.99 0.09 2.69 0.49 3.50 0 0.24 0.45 100 

 

 

   

 
  

   

  

 

Fig. 12.11 
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 The mode shapes for MOD1 are shown in Fig. 12.11. 

12.3.4  Degree of freedom correlation 

In the comparison of two sets of modal vectors, one of the issues of 

interest is the influence of individual DOFs on the vector resemblance. The spatial 

dependence of the previously-presented correlation criteria can be misleading. On 

one side, unacceptable large off-diagonal terms in cross-orthogonality matrices can 

correspond to large errors in points of very small shape amplitude. On the other 

hand, very small off-diagonal elements of the XOR matrix do not necessarily 

indicate unrelated vectors. 

A series of criteria have been developed to reveal the DOF dependence of 

the discrepancy between modal vectors. Their interpretation is not obvious and 

caution must be taken in their use as indicators of modeling accuracy [12.12]. 

12.3.4.1  Coordinate Modal Assurance Criterion  

The Coordinate MAC (COMAC) is used to detect differences at the DOF 

level between two modal vectors [12.13]. The COMAC is basically a row-wise 

correlation of two sets of compatible vectors, which in MAC is done column-wise. 

The COMAC for the j-th DOF is formulated as 

  
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,  (12.25) 

where   is the index of the CMP,   jA  is the j-th element of the  -th paired 

analytical modal vector, and   jX  is the j-th element of the  -th paired 

experimental modal vector. Both sets of modal vectors must have the same 

normalization. 

The COMAC is applied only to CMPs after a mode pairing using the 

MAC. It is a calculation of correlation values at each DOF, j, over all CMPs, L, 

suitably normalized to present a value between 0 and 1. The summation is 

performed on rows of the matrix of modal vectors, in a manner similar to the 

column-wise summation in the MAC. However, at the numerator, the modulus sign 

is inside the summation, because it is the relative magnitude at each DOF over all 

CMPs that matters. 

The only thing the COMAC does, is to detect local differences between 

two sets of modal vectors. It does not identify modeling errors, because their 

location can be different from the areas where their consequences are felt. Another 
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limitation is the fact that COMAC weights all DOFs equally, irrespective of their 

magnitude in the modal vector. 

 
Fig. 12.12 (from [12.7]) 

The simplest output of the computation is a list of COMAC values 

between 0 and 1, which help locating the DOFs for which the correlation is low. 

These DOFs are also responsible for a low value of MAC. The COMAC can be 

displayed as a bar graph of its magnitude against the DOF index (Fig. 12.12). 

12.3.4.2  Enhanced Coordinate Modal Assurance Criterion  

A different formulation, loosely called also COMAC, is 

     jECOMACjCOMAC 1 ,   (12.26) 

where the Enhanced Coordinate Modal Assurance Criterion (ECOMAC) is 

defined as [12.14] 
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The ECOMAC is the average difference between the elements of the 

modal vectors. It has low values for correlated vectors. It is sensitive to calibration 

and phase shifting errors in test data. The ECOMAC is dominated by differences at 

DOFs with relatively large amplitudes. 

12.3.4.3  Normalized cross-orthogonality location  

A different criterion that avoids the phase sensitivity is the Normalized 

Cross-Orthogonality Location (NCOL), defined as [12.10] 
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NCOL is a DOF-based normalized cross-orthogonality check which does 

not contain mass or stiffness terms. It allows the inclusion of phase inversions 

(there is not a modulus under the sum in the numerator) that are important near 

nodal lines. 

12.3.4.4  Modulus difference  

The Modulus Difference (MD) is defined as the column vector formed by 

the differences between the absolute values of the corresponding elements of two 

paired modal vectors [12.13]: 

        XAMD     .   (12.29) 

The Modulus Difference Matrix: 

    L)MDMDMDMDM (   ....   (2)   (1)    (12.30) 

can be displayed as a 3D graph showing the locations of low correlation between 

two sets of modal vectors. An alternative implementation exists for complex 

modes. 

12.3.4.5  Coordinate Orthogonality Check  

The Coordinate Orthogonality Check (CORTHOG) determines the 

individual contribution of each DOF to the magnitude of the elements of the cross-

orthogonality matrix [12.15]. 

If the XORTAM for the r-q mode pair and the j-k DOF pair is written in the 

double sum form: 

       
 


L

j

L

k
kqAjkjrX

jk
rq mXOR

1 1

           , (12.31) 

where jkm  are elements of the analytical mass matrix, it can be seen that each off-

diagonal element results from a summation of contributions from all DOFs.  

 For an off-diagonal term to become zero, the vectors need not be 

correlated. Each product    AX m       is not zero, only their summation. 

Inspection of    AX m       products is not sufficient to assess discrepant DOFs. A 

comparison is imposed of expected    AA m       products to actual values 

   AX m      . The best approach is to compute the difference 

        kAjkjAkAjkjX mm              for each j-k DOF pair and to normalize it by 

division with the maximum difference [12.15]. 

If  X  is replaced by  A , then the double sum represents elements of 

the analytical orthogonality matrix. The CORTHOG is the simple difference of the 
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corresponding triple product terms in the two matrices, summed for the column 

index of DOFs: 

              



L

qAjjrAqAjjrXrq mmjCORTHOG
1

           )( 


  . (12.32) 

The CORTHOG can also be displayed as a bar graph of its magnitude 

against the DOF index. It identifies which DOFs are most likely discrepant with 

respect to the FEM DOFs, on a weighted base. 

12.3.5  Modal kinetic energy 

Modal kinetic energy and modal strain energy comparisons are being 

used to assess the TAM validity or to locate dynamically important DOFs. Modal 

effective mass distributions are also used for comparison of important modes. 

The modal mass matrix 

         R
FEMTAM

TR
FEM mGM          (12.33) 

has elements 
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with j,i  over target mode shapes and ,k  over TAM DOFs. 

For ji  , the term within the bracket 

     


 jAkjAkkj mKE        (12.35) 

is the kinetic energy associated with the k-th DOF for the j-th mode. 

Kinetic energy computations are performed for the FEM modes to 

determine which DOFs within any mode are dynamically important. This helps in 

the selection of sensor locations. The distribution of KE within the TAM modes 

can be compared to the FEM to assess TAM validity.  

A Modal Strain Energy criterion can be developed is a similar way based 

on the modal stiffness matrix. 

12.4  Comparison of FRFs 

Compared response functions usually include Frequency Response 

Functions (FRFs), Operating Deflection Shapes (ODSs) and Principal Response 
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Functions (PRFs). In the following, the presentation will be focused on the 

comparison of FRFs. ODSs can be compared as mode shape vectors. 

There are three main kinds of comparison: 1) analytical-to-analytical, 2) 

experimental-to-experimental, and 3) analytical-to-experimental. The latter is of 

interest in structural modification and updating procedures and will be considered 

as default. 

12.4.1  Comparison of individual FRFs 

A typical FRF contains hundreds of values so that a graphical format is 

the most appropriate for comparisons. Diagrams of the FRF magnitude as a 

function of frequency are satisfactory for most applications. Bode diagrams, 

showing both the magnitude and the phase variation with frequency, are often used. 

Nyquist plots for selected parts of the frequency response are preferred only for 

highly damped systems, or when detailed information around a resonance is 

required. A visual inspection is usually sufficient to determine similarities or lack 

of agreement of two FRFs. 

The simplest comparisons may include: 1) FRFs measured using different 

excitation levels, as a linearity check; 2) FRFs measured or calculated switching 

the input and output points, as a reciprocity check; 3) FRFs measured or calculated 

before and after a structural modification, to show its effect on the system 

response; 4) FRFs calculated for different models and levels of damping; 5) FRFs 

calculated before and after a data reduction intended to eliminate the noise and the 

linearly-related redundant information.  

It is customary to use an overlay of all the FRFs, measured from all 

combinations of input and output coordinates, and to count the resonance peaks as 

a preliminary estimation of the model order.  

Comparisons of measured and predicted FRFs may include: 1) FRFs 

calculated with different terms included in the summation, to check the effect of 

residual terms and whether a sufficient number of modes have been included; 2) a 

measured FRF and the corresponding regenerated analytical curve, calculated from 

an identified modal model; 3) an initially unmeasured FRF curve, synthesized from 

a set of test data, and the corresponding FRF curve obtained from a later measured 

set of data, to check the prediction capability of the analytical model. 

Three factors must be borne in mind when analytically-generated FRF 

curves are used in the comparison. First, the way the damping has been accounted 

for in the theoretical model; second, the fact that the analytical FRFs are usually 

synthesized from the modal vectors of the structure and depend on the degree of 

modal truncation, and third, when the compared FRFs originate from two models, 

one model being obtained by a structural modification of the other, the comparison 

must take into account the frequency shift and the change of the scale factor in the 
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FRF magnitude. For instance, if the reference stiffness matrix is modified by a 

factor of  , the frequencies in the modified model increase by a factor of  , 

while the FRF magnitudes of an undamped model decrease by a factor of .  

 
Fig. 12.13 (from [12.7]) 

Generally, in the correlation of measured and synthesized FRFs in an 

updating process, pairing of FRFs at the same frequency has no physical meaning. 

As several physical parameters at the element level are modified, an average 

frequency shifting exists at each frequency line, so that an experimental frequency 

X  will correspond to a different analytical frequency A . 

A global error indicator, calculated as the ratio of the Euclidean norm of 

the difference of two FRF vectors measured at discrete frequencies and the norm of 

a reference FRF vector, is of limited practical use. Visual inspection of two 

overlaid FRF curves can be more effective in localizing discrepancies (Fig. 12.13). 

12.4.2  Comparison of sets of FRFs 

An FRF data set is usually measured at a larger number of response 

measurement points, oN , than the number of input (reference) points, iN . The 

measured FRF matrix   
io xNNH   contains values measured at a single 

frequency,  . If measurements are taken at fN  frequencies, then a complete set 
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of FRF data is made of fN  matrices, of row dimension oN  and column dimension 

iN . In a typical modal test, at least one column of the FRF matrix is measured. For 

structures with close or coincident natural frequencies, FRF elements from several 

such columns are measured. In order to compare several FRFs simultaneously it is 

necessary to use some frequency response correlation coefficients.  

12.4.2.1 Frequency Response Assurance Criterion 

Consider a complete set of ioNN  FRFs, measured at oN  response 

locations and iN  excitation locations, each containing values measured at fN  

frequencies. 

A Compound FRF (CFRF) matrix, of size iof NNN   can be constructed 

such that each row corresponds to different individual FRF values at a specific 

frequency, and each column corresponds to a different input/output location 

combination for all frequencies (9.8) 

         ...H...HHA jNxNN iof        2111 ,  (12.36) 

where    jH  is an fN  dimensional FRF column vector, with response at location 

j due to excitation at  . 

Each column of the CFRF matrix is an FRF. If the magnitude of its 

entries is plotted as a function of frequency, then an FRF curve is obtained. The 

columns of the CFRF matrix are (temporal) vectors that can be compared using the 

MAC approach, i.e. calculating a correlation coefficient equal to the squared cosine 

of the angle between the two vectors. 

The Frequency Response Assurance Criterion (FRAC), defined as 

[12.16] 
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is used to assess the degree of similarity between measured  XH  and synthesized 

    AH  FRFs, or any compatible pair of FRFs, across the frequency range of 

interest. 

The FRAC is a spatial correlation coefficient, similar to the COMAC, but 

calculated like the MAC. It is a measure of the shape correlation of two FRFs at 

each j,   input/output location combination. The FRAC can take values between 0 

(no correlation) and 1 ( perfect correlation). 



318                                                                                           MECHANICAL VIBRATIONS 

The FRAC coefficients can be displayed in a FRAC matrix, of size 

ioxNN , which looks different from the usual MAC matrix, the diagram of each 

column resembling a COMAC plot. 

12.4.2.2  Response Vector Assurance Criterion 

The transposed CFRF matrix can be written 

            ...H...HHA fxNNN
T

fio
         21  , (12.38) 

where each column contains all ioNN  FRFs, measured at a certain frequency f  

 fN,...,,f 21  for oN  output locations and iN  input locations. 

A temporal vector correlation coefficient can be defined using the 

columns of the   TA   matrix. If the column vector       fH  contains only the oN  

entries from the  -th input point, then the Response Vector Assurance Criterion 

(RVAC) is defined as [12.17] 
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It contains information from all response DOFs simultaneously and for 

one reference point, at a specific frequency. The RVAC is analogous to the MAC 

and takes values between 0 (no correlation) and 1 (perfect correlation). Each oN  

dimensional column is a response vector, i.e. the vector of displacements at all oN  

response measurement points, calculated or measured at a given frequency, so that 

the RVAC can also be applied to the correlation of operating deflection shapes. 

When the analytical model is undamped, the complex values of the 

measured FRFs should be converted into real ones, using an approximation of the 

type 

            Re sign      abs   complexcomplexreal HHH  . (12.40) 

The RVAC coefficients can be displayed in a plot of the type used for the 

MAC.  

However, the RVAC matrix, of size ff NN  , yields a much denser 

diagram, plotted at several hundred frequency values, hence more difficult to 

interpret. It helps in the selection of frequencies for correlation, within the intervals 

with high values of RVAC, where the FEM data are close to the test data. 
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12.4.2.3 Frequency Domain Assurance Criterion 

If the analytical FRF is calculated at fN  analytical frequencies A , and 

the test FRF is measured at fN  experimental frequencies X , then a Frequency 

Domain Assurance Criterion (FDAC) can be defined [12.18], whose real version is 

     
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             (12.41) 

where   AAH   is the analytical FRF at any analytical frequency, A , and 

  XXH   is the experimental FRF at any experimental frequency, X . 

Using experimental FRFs converted to real values, the FDAC is calculated 

as the cosine of the angle between the FRF column vectors, with values between -1 

and 1, to take into account the phase relation between the FRF vectors. Note that 

the original version of FDAC, still used in many publications, had the numerator 

squared, like the MAC, being insensitive to the phase lag between the FRFs. 

While the FRAC is a coordinate correlation measure across all 

frequencies, the RVAC and FDAC coefficients represent the correlation between 

two sets of FRFs at specific frequencies across the full spatial domain. The RVAC 

cross-correlates each frequency line with every other measured frequency line, 

across the spatial domain. In a way, the MAC can be considered as the RVAC 

evaluated only at the natural frequencies. 

The FRAC is sometimes compared to the COMAC, but the calculation is 

different. The modulus in the numerator is taken after the vector multiplication, 

like in the MAC, and not inside the summation, for each term of the scalar product, 

as it is taken in the COMAC. 

Frequency response correlation coefficients must be applied with great 

care, using stiffness factors to adjust for frequency shifts and being aware of the 

approximations introduced by the inclusion of an arbitrary damping model in the 

analysis. A global frequency shift between the experimental and predicted FRFs 

leads to a biased correlation coefficient even if the FRFs are otherwise identical. 

Selection of frequency points is a key factor in any FRF-based correlation. 

Using magnitudes or logarithm values instead of complex values gives 

better results, especially for lightly-damped structures whose FRFs exhibit large 

differences in the order of magnitude and the phase angles. When the damping 

updating is not of interest, it is useful to choose the frequency points away from 

resonances and anti-resonances, though the largest discrepancies noticed visually 

occur in these regions. The FRAC coefficients are more sensitive to resonances and 

less sensitive to anti-resonances heavily affected by modal truncation. 
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The FRAC and RVAC are useful tools for examining the level of 

correlation of FRF data used in frequency-based model updating procedures. 

12.5  Sensor-exciter placement 

Selection of the number and location of measurement coordinates is an 

important part of the pre-test planning activity. Optimal selection of sensor and 

exciter locations is influenced by the number of modes of interest in the analysis.  

The efficiency of all model reduction methods and modal indicators (as 

the MIFs) is fully dependent on the selection of active DOFs. Decisions to make 

are the following: a) number and index of target modes, b) number of sensor 

locations, c) where to place sensors, d) number of exciter locations, e) where and 

on what direction to apply the excitation, and f) best exciter/sensor combination. 

12.5.1  Selection of active DOFs / Sensor placement 

Different model reduction methods are presented in Chapter 11. Non-modal 

condensation techniques, like the Irons-Guyan reduction, are used to generate a 

reduced model that accurately maintains the characteristics of the original model at 

the lower frequencies. The sensor placement aims to measure the lower frequency 

modes accurately. It is postulated that the active DOFs of the FEM can also serve 

as response measurement locations for modal testing, i.e. as sensor locations. 

In control dynamics and health monitoring applications the objective is to 

track only a preselected sub-set of target modes, discarding some low-frequency, 

non-observable or non-important modes. This makes modal reduction methods best 

adequate. 

12.5.1.1 Small stiffness / large inertia criterion 

The strategy for the automatic selection of dynamic DOFs based on concepts 

developed in connection to the Irons-Guyan reduction (GR) is presented in Section 

11.2.1.3. As originally conceived, the aim of GR was to reduce the model order 

before solving the eigenvalue problem, using only the physical matrices of the 

FEM. The reduction of the size of the eigenvalue problem uses a transformation 

matrix based on the spatial distribution of the mass and stiffness properties. 

The automatic selection of a-DOFs is based on small values of the ratio 

iiii mk  between the diagonal elements of the stiffness and mass matrices for the i-

th coordinate. The GR method is valid for frequencies which are smaller than a cut-

off value, c , equal to the smallest eigenfrequency of the o-DOFs eigenvalue 
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problem (11.47). Stepwise elimination of o-DOFs improves the accuracy of non-

modal reduction techniques. 

12.5.1.2  Effective independence method (EfI) 

 Test/analysis correlation techniques require linearly independent test 

modes; otherwise the cross-orthogonality matrix check fails. The requirement of 

absolute identifiability is more stringent than that of observability demanded by 

most identification and control techniques. Active DOFs must be located so that 

the resulting modal vectors can be spatially differentiated. In the Effective 

Independence (EfI) method [12.19], candidate a-DOF locations are ranked 

according to their contribution to the linear independence of the FEM target modes. 

This implies solution of the FEM full size eigenvalue problem.  

 Starting with the full modal matrix    of the FEM, the first step is to 

remove all coordinates which cannot be measured (e.g.: rotations) or which are 

considered of little significance. Next, the target modes are determined using a 

modal selection procedure [12.20] which orders the modes in terms of their 

contribution to the input/output dynamics of the model. Let  st  be the reduced 

matrix of tn  target modes truncated to the sn  candidate active DOF locations. 

 The cross-product (Gram) matrix  oA  is then formed 

            



sn

i
i

T
ist

T
stoA

1

   (12.42) 

which will be referred to as the Fisher information matrix (FIM). 

 The problem is to search for the best set of an  active (master) locations 

from the sn  candidate locations so that     FIMAo detdet    is maximized. 

 The matrix  

              Tstoststst AP 
1

  (12.43) 

is computed, where   denotes the pseudo-inverse.  

 This is the orthogonal projector onto the column space of  st , with trace 

equal to its rank and to the number of target modes tn  (idempotent matrix) 

       t
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i
i

n

i
ii nPPP
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 Each diagonal element iiP  represents the fractional contribution of the i-th 

DOF to the rank of  P , and hence to the linear independence of the target modes. 

 If 0iiP , the i-th row of  st  is null and the modes are not observable 

from the i-th sensor location. If 1iiP , the i-th sensor location is vital to the linear 

independence. 

 Elements iiP  are sorted based on magnitude. The DOF location with 

minimum contribution to the rank of  P , indicated by the smallest element, is 

removed from the candidate set. The matrix  P  is then recomputed, and the 

process is repeated, DOFs being deleted one at a time, until the number an  is 

attained or until eliminating one additional DOF creates a rank deficiency. 

  It is useful to track the iiP  values. If several DOFs have the same iiP  

value, then they are deleted simultaneously [12.21]. 

 The initial candidate DOF set is iteratively (suboptimally) reduced to the 

desired number an . Removing a DOF location, i.e. discarding the corresponding 

row from the reduced matrix of modal vectors  st , resumes to subtracting the 

respective dyadic product from the sum, setting a deflated matrix 

          i
T

ioAB  .   (12.44) 

 Because 

              i
T

ioto AIAB 
1

 , 

              i
T

ioto AIAB 
1

detdetdet


 , 

              T
ioito AIAB 

1
detdetdet


 , 

       iio PAB  1 detdet , 10  iiP   (12.45) 

the EfI method tends to maintain  FIMdet  that quantifies the total amount of 

information retained. 

 The value of  FIMdet  varies with the number of DOFs, so it cannot give 

an absolute assessment of the quality of a set of locations. However, plots of 

 FIMdet  versus the number of retained DOFs are useful to determine both the 

quality of the elimination process and a lower limit when the FIM becomes rank 

deficient. 
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 Another useful information is obtained tracking the elimination process on 

the diagram of  FIMcond  vs. the number of retained DOFs. The smallest the 

condition number, the best the choice of locations. Minima on these plots show 

optimal values for the number of retained DOFs, while a sudden increase denotes 

the lower limit set by the rank deficiency of the FIM matrix. 

 Several other criteria have been investigated [12.22] to assess the quality of 

any set of a-DOF locations. The 2-norm condition number of the eigenvector 

matrix, defined as the ratio of the largest singular value to the smallest, was 

considered the best. 

 For the calculation of  P , the tn  columns in  st  are assumed to be 

linearly independent. As the matrix  oA  is symmetric and positive definite, its 

eigenvalues are real and positive. Solving the eigenvalue problem  

         0  IAo ,   (12.46) 

for orthonormal eigenvectors 
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and the spectral decomposition of  oA  is 
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so that its inverse is 
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 The orthogonal projector (12.43) becomes 
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 Example 12.3 

 Figure 12.14 shows half of a rigid-jointed plane frame for which 
3kg/m 7810= , 

211N/m102.1= E , 
4mm 712=I , 

2mm 0.68=A , m .20320= . 
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The columns are built into the ground and the extensions of cross-members are 

simply supported at the right end. The frame was modelled with 51 DOFs, using 21 

beam elements neglecting shear deformations and rotatory inertia. 

          The model was first reduced by eliminating 12 axial displacements along the 

vertical members and 18 rotations. The remaining 21 translations have been used to 

select a reduced number of a-DOF locations. If the first six modes of vibration are 

selected as target modes, the location of 6, 9 and respectively 12 a-DOF positions 

chosen by EfI is shown in Fig. 12.14, a. For comparison, the location of the same 

number of a-DOFs by the K/M method is illustrated in Fig. 12.14, b.  

 
a 

 
b 

Fig. 12.14 

 Eigenfrequencies calculated with the Irons-Guyan reduction method using 

12 and 6 DOFs, respectively, selected by EfI and K/M are given in Table 12.4. It is 
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seen that EfI method performs better and by proper selection of a-DOFs has a 

higher cut-off frequency. 

 The poor selection of 6 DOFs by the K/M method is explained partly by 

the existence of 9 identical iiii /mk  values, from which only six with the lowest 

indices are chosen. 

Table 12.4.  Natural frequencies of the planar frame from Fig. 12.14 

 

Mode 

  no. 

Full FE model Reduced FE model 

51 DOFs 
12 DOFs 12 DOFs 6 DOFs 6 DOFs 

EfI method K/M method EfI method K/M method 

 Natural frequency, Hz 

1 34.039 33.7457 33.9 33.792  36.672 

2 108.568 108.519 112.6 108.989 198.483 

3 187.317 187.561 198.8 200.030 458.955 

4 423.479 425.483 427.0 460.657 604.325 

5 520.839 524.707 524.8 638.479 824.552 

6 605.249 611.349 629.4 641.248 827.047 

7 624.523 630.552 660.4   

8 767.527 779.801 -   

9 823.296 823.571 823.4   

10 826.027 826.122 826.1   

11 827.175 827.184 827.2   

12 962.435 975.250 916.3   

Cut-off frequency 1608.7 232.1 358.5 70.8 

 

 

 Figure 12.15, a  shows the evolution of  FIMdet  and  FIMcond  for six 

a-DOFs. Because the target modes are the lowest 6 modes, there is no rank 

deficiency. The index  FIMdet  decreases monotonically, but  FIMcond  is 

lowest for 12 a-DOFs. 

 Figure 12.15, b shows the same plots when the four target modes are the 

modes 4, 5, 6, 7. If four a-DOFs are selected, the plots indicate rank deficiency for 

values lower than 9. Figure 12.15, c shows the same tendency for three target 

modes 9, 10, 11, and six selected a-DOFs. The minimum number of 9 a-DOFs 

corresponds to the nine identical lowest iiii /mk  values.  
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a 

 
b 

 
c 

Fig. 12.15 

12.5.1.3  Sensor location with Arnoldi and Schur vectors 

Sensor Location with Arnoldi Vectors (SLAVE) is a variant of the 

Effective Independence method [12.6], using Arnoldi vectors instead of 

eigenvectors. It is used with the Arnoldi TAM, which is the Modal TAM calculated 

based on Arnoldi vectors instead of modal vectors. 
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Using the Rayleigh-Ritz approximation (8.48), the eigenvectors  st  

can be expressed as linear combinations of Arnoldi vectors  sV . The matrix  sV  

is obtained by truncating  mV  in (8.48) to tn  columns. 

The orthogonal projector onto the column space of  st  is the matrix  

            
 ssstst VVP  ,   (12.49) 

where   denotes the Moore-Penrose pseudoinverse.  

The diagonal element 

       
 ssii VVP diag ,    (12.50) 

is the Effective Independence value corresponding to the i-th sensor. It represents 

the fractional contribution of the i-th DOF to the rank of  P , and hence to the 

independence of the target modes. 

The EfI strategy is to sort the elements iiP  serially, based on magnitude. 

At each step, the smallest element iiP  is eliminated from the candidate set. The 

corresponding row is discarded from the matrix  sV , recomputing the matrix  P  

with the deflated matrix  sV  until the desired number of sensors is attained. 

 Example 12.4 

 Consider the grounded planar frame structure used in the third GARTEUR 

updating exercise (Fig. 11.4). The structure is constrained to vibrate only in its own 

plane. Here it is modelled with 78 Bernoulli-Euler beam elements (instead of 48 in 

Example 11.2) with consistent mass matrices. The model consists of 72 free nodes 

resulting in 144 translational and 72 rotational DOFs. The horizontal beams, of 5m 

length, and the diagonal beams are modelled with 7 elements each. The vertical 

beams, of 3m length, are modelled with 5 elements each. 

 

Fig. 12.16 (from [12.5]) 

 The first six natural frequencies are given in Table 12.5. The FEM values, 

listed in the second column, correspond to the full eigenvalue problem  216n , 
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being obtained after 32 iterations for a convergence tolerance of 10-10 and 12 

Arnoldi vectors. A starting vector of ones has been used.  

Table 12.5.  Modal data from the Modal TAM 

 

 

 

 
No 

 

 

FEM 

natural 

frequency, 

Hz 

Number of Arnoldi vectors 

8 9 10 

Frequency 

error, 

% 

Mode 

shape 

error, 

% 

Frequency 

error, 

% 

Mode 

shape 

error, 

% 

Frequency 

error, 

% 

Mode 

shape 

error, 

% 

1 45.15 0 0 0 0 0 0 

2 79.04 0 0 0 0 0 0 

3 227.18 0 0.01 0 0 0 0 

4 249.67 0 0.06 0 0 0 0 

5 363.56 0.18 5.42 0.02 1.11 0 0 

6 437.88 5.94 125.1 3.20 122.6 0 0 

 

 Columns 3, 5 and 7 list the discrepancies of frequencies computed with the 

Arnoldi algorithm, using 8, 9 and 10 Arnoldi vectors, respectively, 6 target modes, 

for a selection of 6 master DOFs by the EfI elimination technique. The relative 

frequency discrepancy shows a very good reproduction of the low frequency 

spectrum. In fact, for 10an , all the first six Modal TAM eigenfrequencies have 

zero error.  

Table 12.6.  Modal data from the Arnoldi TAM 

 

No 

FEM 
Arnoldi 

TAM 

 

Frequency 

error, 

% 

Mode 

shape 

error, 

% 

 

Diag 

MAC 

x 100 
Natural frequency, 

Hz 

1 45.15 45.15 0 0 100 

2 79.04 79.04 0 0 100 

3 227.18 227.18 0 0 100 

4 249.67 249.67 0 0 100 

5 363.56 363.56 0 0.3 100 

6 437.88 446.64 1.97 108.13 17.3 
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 Columns 4, 6 and 8 list the relative discrepancy of the expanded mode 

shapes, calculated as        100    FEMandedexpFEM /  . 

 For comparison, Table 12.6 shows the data computed using the Arnoldi 

TAM, for a selection of 6 eigenvectors, 12 Arnoldi vectors and the same 

convergence tolerance. The six active DOFs selected by EfI are shown in Figure 

12.16. Column 6 lists the diagonal entries of the MAC matrix between the FEM 

and the expanded mode shapes. It shows perfect matching for the first five modes. 

 The robustness of the Arnoldi TAM is assessed with a global figure of 

merit, based on the Normalized Cross-Orthogonality (NCO) matrix. The NCO rms 

error is calculated as 

   )diag(-rms1 NCONCOrms  .  (12.51) 

 It is a measure of the lack of orthogonality between the two sets of modal 

vectors. For 6an , one obtains rms1=0.084. The low value indicates the good 

performance of the Arnoldi TAM. 

 

Fig. 12.17 (from [12.6]) 

For the same structure, the Schur TAM has been constructed using the active DOFs 

shown in Fig. 12.17, selected by the EfI technique, using only translational DOFs 

and based on the orthogonal projector onto the column space of Schur vectors. 

          The FEM eigenfrequencies have been determined using the JDQR algorithm 

and its MATLAB implementation jdqr.m [8.23]. The natural frequencies calculated 

using the Schur TAM are exactly the same as those computed using the full FEM. 

 The Schur vectors are very similar to the modal vectors. Figure 12.18 

illustrates the first six Schur modes. If overlaid, at the scale of the drawing the 

eigenmodes could hardly be distinguished from the Schur modes. 

             A comparison of the first eight eigenvectors and the expanded Schur 

vectors based on (12.8) is presented in Table 12.7. Column 3 lists the relative 

discrepancy between the two sets of eigenvectors, calculated as 

      100    FEMSchurFEM /  . Figure 12.19 is a plot of the relative 

discrepancy between the first 16 eigenmodes and the Schur vectors. Column 4 lists 

the diagonal entries of the MAC matrix between the FEM modal vectors and the 

matched Schur vectors. 
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Fig. 12:18 (from [12.6]) 

 The robustness of the Schur TAM is assessed with the NCOrms error 

(12.51). In this case 1rms 0.136. The low value indicates relatively good 

performance. However this value is higher than that calculated for the Arnoldi 

TAM and near that calculated for the Modal TAM. The Schur TAM preserves the 

exact reduction features of the Modal TAM but has intrinsic reduced robustness, 

being based on a limited number of Schur vectors which very closely resemble the 

target eigenmodes. 

Table 12.7.  Comparison of Schur vectors and eigenvectors 

No 
Natural frequency, 

Hz 

Relative vector 

discrepancy, % 

diag(MAC) 

x 100 

1 45.15 0 100 

2 79.04 0.11 100 

3 227.18 0.52 100 

4 249.67 2.63 99.9 

5 363.56 0.94 100 

6 437.88 5.77 99.7 

7 446.07 7.95 99.4 

8 469.42 7.7 99.4 

 The use of Schur vectors in model reduction and correlation is justified by 

the fact that Schur vectors are obtained before eigenvectors and with less 

computational effort. Eigenvectors are obtained from an eigendecomposition to 
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diagonal form, while Schur vectors are obtained from an eigendecomposition to 

upper triangular form, which is computationally cheaper. Moreover, Schur vectors 

are known to provide a basis with much better numerical properties than a set of 

eigenvectors. 

 

Fig. 12.19 (from [12.6]) 

 For large order systems, eigenvectors are computed as linear combinations 

of Schur vectors. Because the Schur matrix is dominantly diagonal and the number 

of elements of its eigenvectors is equal to the vector index, the first several 

eigenvectors of the system matrix are combinations of only a few Schur vectors. 

Moreover, the largest contribution in the summation of each system eigenvector 

comes from the Schur vector with the same index. 

 Example 12.5 

 Consider the planar frame from Example 11.1 (Fig. 12.20). The first ten 

FEM natural frequencies are listed in the second column of Table 12.8. The third 

column lists frequencies computed with the Arnoldi TAM, using 20 Arnoldi 

vectors and 10 target modes, for a selection of 10 a-DOFs by the SLAVE 

elimination technique shown in Fig. 12.20. A starting vector of ones has been used. 

The relative frequency error shows a very good reproduction of the low frequency 

spectrum. In fact, for 12an , all the first ten TAM eigenfrequencies have zero 

error. 

 After solving the reduced eigenvalue problem using the Arnoldi TAM 

matrices, the a-DOF vectors have been expanded to the size of the full problem 

(246 DOFs), using the transformation matrix (12.7). Column five lists the relative 

error of the expanded mode shapes, calculated as 

      100    FEMandedexpFEM /  . 

 The last column in Table 12.8 lists the diagonal entries of the MAC matrix 

between the FEM mode shapes and the expanded mode shapes. It shows perfect 

matching for the first eight modes. 
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Fig. 12.20 

Table 12.8.  Comparison of modal data from FEM and Arnoldi TAM 

 

No 

FEM 
Arnoldi 

TAM 

 

Frequency 

error, 

% 

 

Mode shape 

error, 

% 

 

diag(MAC) 

  100 
Eigenfrequency, Hz 

1 35.996 35.996 0 0 100 

2 43.478 43.478 0 0 100 

3 89.786 89.786 0 0 100 

4 132.60 132.60 0 0 100 

5 198.65 198.65 0 0 100 

6 210.48 210.48 0 0.01 100 

7 247.82 246.82 0 0.46 100 

8 264.79 264.80 0.01 1.05 100 

9 312.60 313.64 0.33 19.81 96.1 

10 327.76 337.24 2.89 42.21 83 

 

 The robustness of the Arnoldi TAM is assessed with two global figures of 

merit, based on the Normalized Cross-Orthogonality (NCO) matrix. The NCO rms 

error 1rms  (12.51) and the rms error difference between the NCO matrix and the 

identity matrix 

    ][-)abs( rms2 INCOrms  .   (12.52) 

 Both differences are measures of the lack of orthogonality between the two 

sets of modal vectors. 

 For 10an , 95201 .rms   and 34712 .rms  . For 12an , 94701 .rms   

and 89902 .rms  . The low values indicate the good performance of the Arnoldi 

TAM. 
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12.5.1.4  Selection of the candidate set of sensors 

Initially, a candidate set of sensor locations should be selected. This 

candidate set should be large enough to include all of the important dynamics 

within the target modes that are to be identified by the experiment. In a modal 

survey of a large space structure it might include as many as 500 candidate 

locations. 

A possible procedure is to select the candidate set based on the modal 

kinetic energy distribution, that gives a measure of the dynamic contribution of 

each FEM physical degree of freedom to each of the target mode shapes.  

This distribution is computed using the relation  

     


 jAkjAkkj mKE        (12.53) 

which defines the kinetic energy associated with the k-th DOF for the j-th target 

mode. 

If the values of kjKE  are added over all degrees of freedom, the 

generalized mass is 

      
k

jAkjAk
k

kjjj mKEGM


     .  (12.54) 

If the target modes are normalized to unit mass, 01.GM jj  .  

The candidate set of sensor locations should result in a total kinetic 

energy of sufficient value for each of the target modes. In [12.19] it is considered 

that as little as 40-50% would be sufficient. 

In the EfI method it is assumed that the initial candidate set of sensor 

locations renders the modal partitions  st  linearly independent. 

Attention should be paid to directional modes. Certain DOFs are 

measured with more accuracy than other DOFs. This will pose problems for 

orthogonality checks. Modal TAM and SEREP are independent of the a-DOFs and 

the t-set of target modes. For GR and IRS, the selection of the a-DOFs is 

important. 

The small value DOF of a given modal vector may contribute equally to 

an orthogonality check when compared to large value DOFs of the same modal 

vector. Small value DOFs may contain more error than large value DOFs; they will 

contaminate the orthogonality check at the TAM size or will contaminate the 

experimental mode expansion. 

For structures that contain directional modes it is hard to find a good a-set 

for all target modes. One possible solution is to use different sets of target 

directional modes, especially in correlation studies with expanded modes. 
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12.5.2  Exciter placement 

The problem of finding the optimum exciter configuration for the tn  

target modes was defined as one of combinatorial optimization [12.23], [12.24]. 

Most algorithms describe either actuator placement for given sensor locations, or 

sensor placement for given actuator locations. Tentative algorithms for the 

simultaneous selection of sensor and actuator locations have also been developed 

[12.25]. 

Suboptimal selection procedures are based on the assumption that the an  

response measurement locations are chosen as potential locations for the in  

exciters  ai nn  .  

12.5.2.1  Preselection by EfI method 

Optimal selection of excitation locations using the EfI method has been 

considered in [12.26]. Though the basic assumption - linear independence of the 

forcing vectors - is of questionable physical significance, use of the method in a 

first stage of selection may be helpful. Considerations regarding the energy input 

from the exciter locations yield similar results. 

Introducing proportional damping as a good first approximation, a matrix 

of forcing vectors  aF  is computed premultiplying the modal matrix  at  by 

either the corresponding reduced stiffness or the mass matrix. Assume that 

       ataa kF  .    (12.55) 

The EfI method is then applied to the cross-product matrix 

       a
T

aF FFC  .    (12.56) 

The number of rows an  is reduced to in , when the process is stopped to 

avoid rank deficiency of the force matrix. 

12.5.2.2  Use of synthesized FRF data 

Adding damping to the FEM modal data set, a proportionally damped 

system is created, from which the FRF matrix  H  can be calculated either for the 

frequency range spanned by the target modes or only at the undamped natural 

frequencies. 

Writing the covariance of the FRF matrix as a sum of dyadic products 



12. TEST-ANALYSIS CORRELATION  335 

           



ii nn

HH GHHHH

11 



 , (12.57) 

the information from the  -th exciter is given by the  G  matrix. 

While  H  is complex,   H
HH  is hermitian, hence with real 

diagonal elements. The trace of the rank one matrix  G  can be used as a measure 

of the  -th exciter contribution to the FRF information. Plots of  Gtrace  versus 

frequency help to rank exciter locations. 

12.5.2.3  Final selection using MMIF 

The final selection of exciters is based on the analysis of the multivariate 

mode indicator function (MMIF) calculated from synthesized FRF matrices. MMIF 

curves are plotted using one, two and three excitation DOFs (columns in the FRF 

matrix) in turn, and an  response measurement DOFs (rows in the FRF matrix). 

The minimum number of exciters is determined by the pseudo-multiplicity of 

eigenfrequencies and is increased if supplementary important local modes have to 

be excited. Controllability and local impedance characteristics (to avoid large 

nonlinearities) have to be taken into account, as well as coupling of excitation 

DOFs by skew mounting of exciters. 

A measure of how effective the exciter configuration is at exciting the 

target modes is obtained by calculating the average mode purity index 

    




mn

j

j
m

m MMIF
n

1

1
1

 ,   (12.58) 

where  jMMIF   is calculated at the j-th undamped natural frequency located by 

MMIF. Values 950.m   indicate good location. 

 Example 12.6 

Consider the 11-DOF system from Fig. 9.19. Physical parameters and 

natural frequencies are given in Table 9.2. 

Assuming that the first two modes have to be identified using four 

sensors, the EfI method selects locations 1, 2, 10, 11. If we want to identify modes 

3, 4, 5, and 6, EfI locates four sensors at 1, 5, 8, 11. If the target modes are the first 

six modes, the EfI method locates four sensors at 1, 4, 8 and 11. However plots of 

 FIMdet  and  FIMcond  show rank deficiency for a number of sensors less than 

the number of target modes (Fig. 12.21). Location of six sensors results in 1, 2, 4, 

8, 10, and 11. 
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Fig. 12.21 (from [12.21]) 

          For exciter location by EfI, the matrix of undamped eigenvectors is replaced 

by the matrix of forces calculated by premultiplying the modal matrix by the 

hysteretic damping matrix reduced to the coordinates selected as sensor locations.  

 
a 

 
b 

 
c 

Fig. 12.22 (from [12.21]) 



12. TEST-ANALYSIS CORRELATION  337 

 If the first two modes are target modes, the extension of EfI method places 

two exciters at locations 3 and 11. If the target modes are 3, 4, 5, 6, trying to locate 

only two exciters, EfI yields locations 8 and 11. This is wrong, because a minimum 

of four exciters have to be located to avoid rank degeneracy, and both exciters are 

here on the same half of the system. 

 If a 116  FRF matrix is set up for coordinates 1, 2, 4, 8, 10, and 11 

selected by EfI for sensors, and the traces of the eleven dyadic product components 

are calculated and plotted against frequency, two exciters are located at 6 and 7. 

Figure 12.22, a shows the tracked MMIF constructed using a 26  FRF matrix 

with forces at 6 and 7, and responses at 1, 2, 4, 8, 10, and 11. For comparison, Fig. 

12.22, b shows the MMIF for forces at 6, 7 and responses at 1, 3, 5, 7, 9, and 11, 

where the undamped mode shapes have large values. The second location performs 

better, which confirms the sub-optimal character of the suggested procedure. The 

MMIF for forces at 3 and 11 (Fig. 12.22, c) shows that the extended EfI yields the 

worst results. 

12.5.3  Input/output test matrix 

 A procedure for the simultaneous placement of sensors and exciters, using 

data from an a priori finite element model or from pre-test measurements, is based 

on the subset selection of linearly independent columns of a Compound Frequency 

Response Function (CFRF) matrix [12.27]. The first step is the SVD of the CFRF 

matrix. In a second step, the Effective Independence method is applied to the rank-

limited matrix of right singular vectors of the CFRF matrix. The rows selected by 

stepwise elimination determine a sufficiently independent subset of FRFs whose 

output/input indices show the optimum sensor/actuator location.  

 The coordinate combinations for excitation/response measurement can be 

presented in an I/O Matrix [12.28], with the index of the input coordinate displayed 

on the abscissa axis and the index of the output coordinate displayed on the 

ordinate axis.  

 Example 12.7 

 Consider the 15 DOF lumped parameter system shown in Fig. 9.6 of 

Example 9.1. The system has 10 modes of vibration between 10-80 Hz and 5 

(local) modes between 120-160 Hz.  

Receptance FRFs were first computed at 256 frequencies between 50-80 Hz, 

for excitation and response at coordinates 1, 2, 4, 5, 7, 8, 10, 11, 13, and 14 (the 

large masses), then polluted with 5% multiplicative noise. The plot of left singular 

vectors (UMIF) from Fig. 12.23 shows the location of the natural frequencies of 

the first ten modes in the range 10-80 Hz. 
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The problem was to select, from the 100 columns of the CFRF matrix, a 

minimum set of sufficiently independent columns, able to describe the system 

response between 50-80 Hz. Their number was set by the effective rank of the 

CFRF matrix. Based on the PRF plot, a value 6rN  was considered, which 

corresponds to the six resonant modes within the considered frequency range. 

  

  Fig. 12.23    Fig. 12.24 

To determine the location of the six FRFs in the CFRF matrix, the Effective 

Independence method was applied to the 6100  submatrix of right singular 

vectors. The selected matrix contained the columns with indices 38 (11/5), 20 

(14/2), 100 (14/14), 68 (11/10), 37 (10/5), 14 (5/2) of the CFRF matrix. Numbers 

in parentheses indicate the actual output/input coordinate index (different from 

figure). 

 

Fig. 12.25 

The PRF plot for the reduced FRF matrix is shown in Fig. 12.24, where all 6 

initial PRFs are represented. This is an indication that the six selected FRFs can 

successfully replace the 100 functions considered initially. The I/O Test Matrix 

(Fig. 12.25) shows the coordinate combinations for excitation/response 

measurement. 
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