University POLITEHNICA of Bucharest Mechanics of Materials Laboratory	
$\begin{aligned} & \text { Student__________________ } \\ & \text { Faculty______ } \\ & \text { Date___ } \end{aligned}$	COMPRESSION TESTING
Aim of test: - To present the methodology for compression testing - To plot the stress - strain curve in compression for steel - To calculate the ultimate strength in compression for grey cast iron. The specimen Height: $L_{0}=20 \mathrm{~mm}$ Diameter: $d_{0}=20 \mathrm{~mm}$ Cross section area $=$ \qquad mm^{2} Measurement of shortening ΔL_{i} : using two $0.01 \mathrm{~mm} /$ div. dial gauges	Hydraulic compression testing machine with a maximum load of 600 kN
Formulae Based on the values ($F_{i}, \Delta L_{i}$) obtained experimentally, one calculates: The normal stress $\sigma_{i}=\frac{F_{i}}{S_{0}}$ The normal strain $\varepsilon_{i}=\frac{\Delta L_{i}}{L_{0}} \cdot 100$ [\%] F_{i} is the force for which the extensometer registers the shortening $\Delta L_{i}=L_{i}-L_{0}$	Failure modes: a) steel, b) cast iron

Results for the steel specimen

Compression force $F[\mathrm{~N}]$	Left dial gauge shortening $\Delta L_{s}[\mathrm{~mm}]$	Right dial gauge shortening $\Delta L_{d}[\mathrm{~mm}]$	Average shortening $\Delta L=\frac{\Delta L_{s}+\Delta L_{r}}{2}$ $[\mathrm{~mm}]$	Normal stress $\sigma[\mathrm{MPa}]$	Normal strain $\varepsilon[\%]$
0	0	0	0	0	0

The stress strain curve must be plotted and attached to this paper

Results for the cast iron specimen

Failure force in compression: \qquad N

Ultimate strength in compression: \qquad MPa

Observations

1. The steel specimen deforms elasto-plastically taking the shape of a barrel.
2. On the stress - strain curve, a proportionality limit of \qquad MPa was noticed
3. The Young's modulus, obtained as the slope of the linear part of the stress - strain curve has a value of \qquad MPa.
4. Cast iron exhibited a fragile failure, cracks at an angle of 45° with respect to the generatrix of the cylinder being noticed
5.
