

<u>Formulae</u>

For a variation of the applied force in steps of 2kN:

$$(\Delta F_i) = F_i - F_{i-1} = 2000N, (i = 1, 2, ..., n),$$

the elastic constants are calculated using the equations:

$$E_{i} = \frac{\left(\Delta F\right)_{i}}{A\left(\Delta\varepsilon_{l}\right)_{i}} \cdot 10^{6}$$
$$v_{i} = -\frac{\left(\Delta\varepsilon_{l}\right)_{i}}{\left(\Delta\varepsilon_{l}\right)_{i}}$$

in which $(\Delta \varepsilon_l)_i$ and $(\Delta \varepsilon_t)_i$ are variations of the longitudinal and transversal strains (expressed in μ m/m), obtained as a function of the values $(I_l)_i$ and $(I_t)_i$ and of the strain gauge bridges:

$$(\Delta \varepsilon_l)_i = \frac{1}{2} \cdot \frac{k_a}{k_t} \Big[(I_l)_i - (I_l)_{i-1} \Big],$$

$$(\Delta \varepsilon_l)_i = \frac{1}{2} \cdot \frac{k_a}{k_t} \Big[(I_l)_i - (I_l)_{i-1} \Big], \quad (i = 1, 2, ..., n)$$

The average values of the elastic parameters *E* and v for the studied material are finally calculated as:

$$E = \frac{1}{n} \sum_{i=1}^{n} E_i$$

$$v = \frac{1}{n} \sum_{i=1}^{n} v_i$$
The obtained values are compared with those currently used in strength calculations.

<u>Results of tests</u>

i	0	1	2	3	4	5
F_i [N]	2000	4000	6000	8000	10000	12000
ΔF_i [N]	-	2000	2000	2000	2000	2000
(<i>I</i> _{<i>l</i>}) _{<i>i</i>} [µm/m]						
$(I_t)_i \ [\mu m/m]$						
$(\Delta \varepsilon_l)_i \ [\mu m/m]$	-					
$(\Delta \varepsilon_t)_i \ [\mu m/m]$	-					
E _i [MPa]	-					
Vi	-					
Average values: $E = _$ MPa, $v = _$						
<u>Observations</u>						
1						
2						
3						