University POLITEHNICA of Bucharest Mechanics of Materials Laboratory	
Student \qquad Faculty \qquad Year \qquad Group \qquad Date \qquad	EXPERIMENTAL DETERMINATION OF YOUNG'S MODULUS AND POISSON'S RATIO
Aim of tests:: To present the strain gauge measurements for obtaining the elastic constants of a material: E - Young's modulus, v - Poisson's ratio The specimen Material : OLC 45 Diameter of the specimen: $d=16 \mathrm{~mm}$ Cross section area: $A=$ \qquad mm^{2} Strain gauge constant: $k_{t}=2.05$ (the constant of the strain gauge bridge is set to $k_{a}=k_{t}=2.05$)	 C_{1} C_{2} C_{3} C_{4} Active and dummy strain gauges and strain gauge bridges for measurement of the longitudinal and transversal strains
Formulae For a variation of the applied force in steps o $\left(\Delta F_{i}\right)=F_{i}-F_{i-1}=2000 N,(i=1,2, \ldots, n)$, the elastic constants are calculated using the $\begin{aligned} & E_{i}=\frac{(\Delta F)_{i}}{A\left(\Delta \varepsilon_{l}\right)_{i}} \cdot 10^{6} \\ & v_{i}=-\frac{\left(\Delta \varepsilon_{t}\right)_{i}}{\left(\Delta \varepsilon_{l}\right)_{i}} \end{aligned}$ in which $\left(\Delta \varepsilon_{i}\right)_{i}$ and $\left(\Delta \varepsilon_{t}\right)_{i}$ are variations of the $\mu \mathrm{m} / \mathrm{m}$), obtained as a function of the values $\begin{aligned} & \left(\Delta \varepsilon_{l}\right)_{i}=\frac{1}{2} \cdot \frac{k_{a}}{k_{t}}\left[\left(I_{l}\right)_{i}-\left(I_{l}\right)_{i-1}\right] \\ & \left(\Delta \varepsilon_{t}\right)_{i}=\frac{1}{2} \cdot \frac{k_{a}}{k_{t}}\left[\left(I_{t}\right)_{i}-\left(I_{t}\right)_{i-1}\right],(i=1,2, \ldots, n) \end{aligned}$ The average values of the elastic parameters calculated as: $\begin{aligned} & E=\frac{1}{n} \sum_{i=1}^{n} E_{i} \\ & v=\frac{1}{n} \sum_{i=1}^{n} v_{i} \end{aligned}$ The obtained values are compared with thos	2 kN : quations: longitudinal and transversal strains (expressed in $I_{)_{i}}$ and $\left(I_{t}\right)_{i}$ and of the strain gauge bridges: E and v for the studied material are finally currently used in strength calculations.

Results of tests

i	0	1	2	3	4	5
$F_{i}[\mathrm{~N}]$	2000	4000	6000	8000	10000	12000
$\Delta F_{i}[\mathrm{~N}]$	-	2000	2000	2000	2000	2000
$\left(I_{I}\right)_{i}[\mu \mathrm{~m} / \mathrm{m}]$						
$\left(I_{t}\right)_{i}[\mu \mathrm{~m} / \mathrm{m}]$						
$\left(\Delta \varepsilon_{i}\right)_{i}[\mu \mathrm{~m} / \mathrm{m}]$	-					
$\left(\Delta \varepsilon_{\varepsilon_{t}}[\mu \mathrm{~m} / \mathrm{m}]\right.$	-					
$E_{i}[\mathrm{MPa}]$	-					
v_{i}	-					

Average values: $\quad E=$ \qquad MPa, $\quad v=$ \qquad

Observations

1. \qquad
2. \qquad
3. \qquad
