Student Faculty Year Group TORSION TESTING OF WIRES Aim of tests:	University POI	LITEHNICA of Bucharest
Faculty	Mechanics of	Materials Laboratory
Aim of tests: To present the methodology for torsion testing and determination of elastic constants and mechanical characteristics of a spring wire: - Shear modulus - Yield limit in torsion - Ultimate strength in torsion The specimen Material: Diameter of wire: $d = 4.5 \text{ mm}$ Length of measurement zone: $L_0 = 100 \text{ mm}$ Measurement of rotation angle of the wire is made using a mechanical torsiometer	FacultyYearGroup	TORSION TESTING OF WIRES
Material:	To present the methodology for torsion testing and determination of elastic constants and mechanical characteristics of a spring wire: - Shear modulus - Yield limit in torsion	r _o
is made using a mechanical torsiometer	Material: Diameter of wire: $d = 4.5 \text{ mm}$ Length of measurement zone: $L_0 = 100$	
<u>Formulae</u>		
	<u>Formulae</u>	

Yield limit in torsion: $\tau_{y} = \frac{12M_{t}}{\pi d^{3}}$

Ultimate strength in torsion: $\tau_u = \frac{12M_{tu}}{\pi d^3}$

Shear modulus: $G = 584 \cdot \frac{L_0 \cdot \Delta M_t}{d^4 \cdot \Delta \varphi}$

where M_{ty} is the moment of torsion in yielding, M_{tu} is the ultimate moment of torsion and $\Delta \varphi$ is the variation of the angle of rotation (in degrees) that corresponds to an increase ΔM_t of the moment of torsion

Results

a) Determination of the shear modulus

Reading nr.	1	2	3	4	5	6	7	8
Moment of torsion M_t [N·mm]								
Angle of rotation φ [deg]								

Interval	Variation of M_t [N·mm]	Variation of Δφ [deg]	Shear modulus G [MPa]
1 - 2			
2 - 3			
3 - 4			
4 - 5			
5 - 6			
6 - 7			
7 - 8			

Average value : ('j =	MP	ĉ
-------------------	------	----	---

b) Mechanical characteristics in torsion for the studied material

Moment of torsion at yielding M_{ty} [N·mm]	Ultimate moment of torsion M_{tu} [N·mm]	Yield limit in torsion τ _y [MPa]	Ultimate strength in torsion τ_u [MPa]
			-

01	
unser	vations

. The behavior of the material was (ductile/fragile)	
--------------------------------------	------------------	--

- 2. The failure surface was normal to the axis of the specimen.
- 3. The temperature of the specimen increased during test due to internal friction.
- 4. The specimen was magnetized due to the orientation of the grains deformed by hardening.